Methods for renewal objects.

# S3 method for renewal
coef(object, ...)

# S3 method for renewal
vcov(object, ...)

# S3 method for renewal
residuals(object, type = c("pearson", "response", "prob"), ...)

# S3 method for renewal
residuals_plot(object, type = c("pearson", "response", "prob"), ...)

# S3 method for renewal
fitted(object, ...)

# S3 method for renewal
confint(
  object,
  parm,
  level = 0.95,
  type = c("asymptotic", "boot"),
  bootType = c("norm", "bca", "basic", "perc"),
  ...
)

# S3 method for renewal
summary(object, ...)

# S3 method for renewal
print(x, digits = max(3, getOption("digits") - 3), ...)

# S3 method for summary.renewal
print(
  x,
  digits = max(3, getOption("digits") - 3),
  width = getOption("width"),
  ...
)

# S3 method for renewal
model.matrix(object, ...)

# S3 method for renewal
logLik(object, ...)

# S3 method for renewal
nobs(object, ...)

# S3 method for renewal
extractAIC(fit, scale, k = 2, ...)

# S3 method for renewal
addBootSampleObject(object, ...)

# S3 method for renewal
df.residual(object, ...)

Arguments

object

an object from class "renewal".

...

further arguments for methods.

type, parm, level, bootType, x, digits

see the corresponding generics and section ‘Details’.

width

numeric width length.

fit, scale, k

same as in the generic.

Details

Objects from class "renewal" represent fitted count renewal models and are created by calls to "renewalCount()". There are methods for this class for many of the familiar functions for interacting with fitted models.

Examples

fn <- system.file("extdata", "McShane_Wei_results_boot.RDS", package = "Countr")
object <- readRDS(fn)
class(object) # "renewal"
#> [1] "renewal"

coef(object)
#>          scale_    scale_GERMAN       scale_EDU       scale_VOC       scale_UNI 
#>     1.397339743    -0.222677155     0.038579223    -0.173423930    -0.181808127 
#>      scale_CATH      scale_PROT      scale_MUSL     scale_RURAL scale_YEAR_OF_B 
#>     0.242045872     0.123221530     0.638803211     0.068074810     0.002307353 
#>   scale_AGEMARR          shape_ 
#>    -0.034029563     1.236232710 
vcov(object)
#>                        scale_  scale_GERMAN     scale_EDU     scale_VOC
#> scale_           0.0930236225  8.919340e-03 -8.165893e-03  1.153322e-03
#> scale_GERMAN     0.0089193396  5.214102e-03 -1.150253e-03 -4.339834e-04
#> scale_EDU       -0.0081658934 -1.150253e-03  1.063042e-03 -2.814470e-04
#> scale_VOC        0.0011533223 -4.339834e-04 -2.814470e-04  1.935682e-03
#> scale_UNI        0.0256804922  2.754849e-03 -3.355547e-03  1.871018e-03
#> scale_CATH      -0.0031003254 -1.579181e-03  1.237918e-04  5.534533e-05
#> scale_PROT      -0.0027900298 -2.269655e-03  1.023422e-04  1.759421e-05
#> scale_MUSL      -0.0057349764  1.042368e-03  1.377562e-04  1.867273e-04
#> scale_RURAL     -0.0014521343 -2.639966e-04  9.503076e-05  3.333572e-04
#> scale_YEAR_OF_B -0.0001654313 -3.087628e-05 -1.915529e-06  2.043607e-05
#> scale_AGEMARR   -0.0005939423  3.175688e-05 -1.743303e-05 -1.909649e-05
#> shape_           0.0012043607 -1.032629e-04  2.449776e-05 -1.015040e-04
#>                     scale_UNI    scale_CATH    scale_PROT    scale_MUSL
#> scale_           2.568049e-02 -3.100325e-03 -2.790030e-03 -5.734976e-03
#> scale_GERMAN     2.754849e-03 -1.579181e-03 -2.269655e-03  1.042368e-03
#> scale_EDU       -3.355547e-03  1.237918e-04  1.023422e-04  1.377562e-04
#> scale_VOC        1.871018e-03  5.534533e-05  1.759421e-05  1.867273e-04
#> scale_UNI        2.540730e-02 -1.041703e-05  2.833785e-05 -2.566270e-04
#> scale_CATH      -1.041703e-05  4.999685e-03  4.460029e-03  3.044988e-03
#> scale_PROT       2.833785e-05  4.460029e-03  5.805663e-03  2.739216e-03
#> scale_MUSL      -2.566270e-04  3.044988e-03  2.739216e-03  7.468544e-03
#> scale_RURAL      3.278856e-04  5.070440e-05  7.404498e-05  1.637396e-04
#> scale_YEAR_OF_B  4.751321e-05  2.372257e-07 -5.718801e-06 -1.559452e-07
#> scale_AGEMARR   -6.938872e-05 -3.997862e-05 -2.326609e-05  3.817387e-05
#> shape_          -1.347961e-04  1.123694e-04  4.346523e-05  4.525415e-04
#>                   scale_RURAL scale_YEAR_OF_B scale_AGEMARR        shape_
#> scale_          -1.452134e-03   -1.654313e-04 -5.939423e-04  1.204361e-03
#> scale_GERMAN    -2.639966e-04   -3.087628e-05  3.175688e-05 -1.032629e-04
#> scale_EDU        9.503076e-05   -1.915529e-06 -1.743303e-05  2.449776e-05
#> scale_VOC        3.333572e-04    2.043607e-05 -1.909649e-05 -1.015040e-04
#> scale_UNI        3.278856e-04    4.751321e-05 -6.938872e-05 -1.347961e-04
#> scale_CATH       5.070440e-05    2.372257e-07 -3.997862e-05  1.123694e-04
#> scale_PROT       7.404498e-05   -5.718801e-06 -2.326609e-05  4.346523e-05
#> scale_MUSL       1.637396e-04   -1.559452e-07  3.817387e-05  4.525415e-04
#> scale_RURAL      1.456890e-03    4.237730e-06 -1.537028e-05  4.570599e-05
#> scale_YEAR_OF_B  4.237730e-06    5.677948e-06 -4.288778e-06 -9.240759e-07
#> scale_AGEMARR   -1.537028e-05   -4.288778e-06  4.272941e-05 -1.697867e-05
#> shape_           4.570599e-05   -9.240759e-07 -1.697867e-05  1.136108e-03

## Pearson residuals: rescaled by sd
head(residuals(object, "pearson"))
#>          1          2          3          4          5          6 
#> -0.4536889  0.2666367 -0.2879260  1.4626630 -0.3689430 -0.4503339 
## response residuals: not rescaled
head(residuals(object, "response"))
#>          1          2          3          4          5          6 
#> -0.6359564  0.3731793 -0.3861650  1.8671934 -0.5056416 -0.6306918 

head(fitted(object))
#> [1] 2.635956 2.626821 2.386165 2.132807 2.505642 2.630692

## loglik, nobs, AIC, BIC
c(loglik = as.numeric(logLik(object)), nobs = nobs(object),
  AIC = AIC(object), BIC = BIC(object))
#>    loglik      nobs       AIC       BIC 
#> -2077.005  1243.000  4178.010  4239.513 

asym <- se.coef(object, , "asymptotic")
boot <- se.coef(object, , "boot")
cbind(asym, boot)
#>                        asym        boot
#> scale_          0.304997742 0.331438080
#> scale_GERMAN    0.072208742 0.077987820
#> scale_EDU       0.032604326 0.034450773
#> scale_VOC       0.043996381 0.045988517
#> scale_UNI       0.159396681 0.158987448
#> scale_CATH      0.070708448 0.070752807
#> scale_PROT      0.076194899 0.072959615
#> scale_MUSL      0.086420737 0.094049819
#> scale_RURAL     0.038169230 0.039366247
#> scale_YEAR_OF_B 0.002382845 0.002482896
#> scale_AGEMARR   0.006536774 0.006872492
#> shape_          0.033706207 0.044842338
## CI for coefficients
asym <- confint(object, type = "asymptotic")
## Commenting out for now, see the nite in the code of confint.renewal():
## boot <- confint(object, type = "boot", bootType = "norm")
## list(asym = asym, boot = boot)
summary(object)
#> 
#> Call:
#> renewal(formula = form, data = data, dist = "weibull")
#> 
#> Pearson residuals:
#>      Min       1Q   Median       3Q      Max 
#> -2.66294 -0.73038 -0.09425  0.49688  6.73987 
#> Inter-arrival dist.: weibull 
#>               Links: scale: link log, shape: link log 
#> 
#> Count model coefficients
#>                  Estimate Std. Error z value Pr(>|z|)    
#> scale_           1.397340   0.304998   4.581 4.62e-06 ***
#> scale_GERMAN    -0.222677   0.072209  -3.084 0.002044 ** 
#> scale_EDU        0.038579   0.032604   1.183 0.236708    
#> scale_VOC       -0.173424   0.043996  -3.942 8.09e-05 ***
#> scale_UNI       -0.181808   0.159397  -1.141 0.254036    
#> scale_CATH       0.242046   0.070708   3.423 0.000619 ***
#> scale_PROT       0.123222   0.076195   1.617 0.105838    
#> scale_MUSL       0.638803   0.086421   7.392 1.45e-13 ***
#> scale_RURAL      0.068075   0.038169   1.783 0.074505 .  
#> scale_YEAR_OF_B  0.002307   0.002383   0.968 0.332885    
#> scale_AGEMARR   -0.034030   0.006537  -5.206 1.93e-07 ***
#> shape_           1.236233   0.033706  36.677  < 2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
#> 
#> Number of iterations in nlminb optimization: 52 
#> 
#> Execution time  371 
#> Log-likelihood: -2077.0049 on 12 Df
print(object)
#> 
#> Call:
#> renewal(formula = form, data = data, dist = "weibull")
#> 
#> Count model coefficients (inter-arrival weibull with scale: link log, shape: link log):
#>          scale_     scale_GERMAN        scale_EDU        scale_VOC  
#>        1.397340        -0.222677         0.038579        -0.173424  
#>       scale_UNI       scale_CATH       scale_PROT       scale_MUSL  
#>       -0.181808         0.242046         0.123222         0.638803  
#>     scale_RURAL  scale_YEAR_OF_B    scale_AGEMARR           shape_  
#>        0.068075         0.002307        -0.034030         1.236233  
#> 
#> Log-likelihood: -2077.0049 on 12 Df
## see renewal_methods
## see renewal_methods