Financial time series for Tsay (2005, ch. 1)
ch01data.Rd
Financial time series used in examples in chapter 1.
Format
Objects of class zoo giving simple returns for each trading period (day, week or month) for different periods, with different start dates but typically running to the end of 2003.
d.ibmvwewsp6203, m.ibmvwewsp2603 Zoo objects with 4 columns (IBM, VW, EW, and SP). Daily data starts with 1962-07-03. Monthly data starts with 1926-01-30.
d.intc7303, m.intc7303 Matrices of class zoo with a single column "Intel" starting from January 1973.
d.3m6203, m.3m6203 Matrices of class zoo with a single column "MMM". Daily data starts with 1962-07-03. Monthly data starts with 1946-02-28.
d.msft8603, m.msft8603 Matrices of class zoo with a single column "MSFT" starting from 1906-03-14.
d.c8603, m.c8603 Matrix of class zoo with a single column "C" starting from 1986-10-30.
m.gs10, m.gs1 Monthly 10-yr and 1-yr Treasury constant maturity rates (4/53-3/04)
d.fxjp00 Daily exchange rate between U.S. dollar and Japanese yen
m.fama.bond5203 Monthly bond returns as follows:
m1.121-12m
m24.3624-36m
m48.6048-60m
m61.12061-120m
m.gs3, m.gs5 Monthly 3-yr and 5-yr Treasury constant maturity rates
w.tb3ms, w.tb6ms Weekly Treasury Bill rates
Details
The first 16 of these objects contain daily and monthly simple returns for 8 financial time series analyzed Tsay (2005, Table1.2). These 8 are SP (Standard & Poors), EW, IBM, Intel, Microsoft, and Citi-Group, beginning at different times and running to the end of 2003.
The others are used elsewhere in chapter 1.
Examples
# First half of Table 1.2:
data(d.ibmvwewsp6203)
data(d.intc7303)
data(d.3m6203)
data(d.msft8603)
data(d.c8603)
(Daily.Simple.Returns.pct <- rbind(
SP = FinTS.stats(100*d.ibmvwewsp6203[, "SP"]),
VW = FinTS.stats(100*d.ibmvwewsp6203[, "VW"]),
EW = FinTS.stats(100*d.ibmvwewsp6203[, "EW"]),
IBM= FinTS.stats(100*d.ibmvwewsp6203[, "IBM"]),
Intel=FinTS.stats(100*d.intc7303[, "Intel"]),
MMM= FinTS.stats(100*d.3m6203[, "MMM"]),
MSFT=FinTS.stats(100*d.msft8603[, 'MSFT']),
C = FinTS.stats(100*d.c8603[, "C"])
) )
#> Start Size Mean Standard.Deviation Skewness
#> SP 1962-07-03 10446 0.03312081 0.9453075 -0.94499859
#> VW 1962-07-03 10446 0.04538579 0.8912131 -0.76008356
#> EW 1962-07-03 10446 0.08502202 0.7255660 -0.88633597
#> IBM 1962-07-03 10446 0.05233745 1.6481052 0.07749371
#> Intel 1973-01-02 7828 0.13073441 2.9983212 -0.15828297
#> MMM 1962-07-03 10446 0.05430031 1.4644984 -0.28348680
#> MSFT 1986-03-14 4493 0.15738059 2.5048308 -0.24946227
#> C 1986-10-30 4333 0.11003623 2.2891492 0.10079641
#> Excess.Kurtosis Minimum Maximum
#> SP 25.764589 -20.470 9.100
#> VW 18.321499 -17.140 8.660
#> EW 13.419351 -10.390 6.950
#> IBM 10.214412 -22.963 13.164
#> Intel 5.849641 -29.572 26.378
#> MMM 12.868398 -25.979 11.538
#> MSFT 8.749528 -30.116 19.565
#> C 6.787964 -21.739 20.755
(Daily.log.Returns.pct <- rbind(
SP = FinTS.stats(100*log(1+d.ibmvwewsp6203[, "SP"])),
VW = FinTS.stats(100*log(1+d.ibmvwewsp6203[, "VW"])),
EW = FinTS.stats(100*log(1+d.ibmvwewsp6203[, "EW"])),
IBM= FinTS.stats(100*log(1+d.ibmvwewsp6203[, "IBM"])),
Intel=FinTS.stats(100*log(1+d.intc7303[,"Intel"])),
MMM= FinTS.stats(100*log(1+d.3m6203[, "MMM"])),
MSFT=FinTS.stats(100*log(1+d.msft8603[, 'MSFT'])),
C = FinTS.stats(100*log(1+d.c8603[, "C"]))
) )
#> Start Size Mean Standard.Deviation Skewness Excess.Kurtosis
#> SP 1962-07-03 10446 0.02861753 0.9504892 -1.4058397 36.907587
#> VW 1962-07-03 10446 0.04138657 0.8945797 -1.0620475 23.906167
#> EW 1962-07-03 10446 0.08234596 0.7275677 -1.0519055 14.703639
#> IBM 1962-07-03 10446 0.03874377 1.6490332 -0.2548118 12.602898
#> Intel 1973-01-02 7828 0.08549078 3.0128747 -0.5442402 7.536558
#> MMM 1962-07-03 10446 0.04352374 1.4693908 -0.6883163 20.055791
#> MSFT 1986-03-14 4493 0.12573133 2.5181738 -0.7307891 13.225870
#> C 1986-10-30 4333 0.08381041 2.2893291 -0.2109124 7.467405
#> Minimum Maximum
#> SP -22.90359 8.709471
#> VW -18.80177 8.305356
#> EW -10.97033 6.719125
#> IBM -26.08844 12.366791
#> Intel -35.05793 23.410723
#> MMM -30.08213 10.919515
#> MSFT -35.83335 17.868997
#> C -24.51208 18.859351