Real moment condition based on the characteristic function
sampleRealCFMoment.Rd
Computes the moment condition based on the characteristic function as a real vector.
Details
The moment conditions
The moment conditions are given by: $$g_t(X,\theta) = g(t,X;\theta) = e^{itX} - \phi_{\theta}(t) . $$ If one has a sample \(x_1,\dots,x_n\) of i.i.d realisations of the same random variable \(X\), then: $$\hat{g}_n(t,\theta) = \frac{1}{n}\sum_{i=1}^n g(t,x_i;\theta) = \phi_n(t) -\phi_\theta(t) , $$ where \(\phi_n(t)\) is the eCF associated with the sample \(x_1,\dots,x_n\), and defined by \(\phi_n(t) = \frac{1}{n} \sum_{j=1}^n e^{itX_j}\).
The function compute the vector of difference between the eCF and the
CF at a set of given point t
. If length(t) = n
, the
resulting vector will be of length = 2n
, where the first
n
components will be the real part and the remaining the
imaginary part.
Examples
## define the parameters
nt <- 10
t <- seq(0.1, 3, length.out = nt)
theta <- c(1.5, 0.5, 1, 0)
pm <- 0
set.seed(222)
x <- rstable(200, theta[1], theta[2], theta[3], theta[4], pm)
# Compute the characteristic function
CFMR <- sampleRealCFMoment(x = x, t = t, theta = theta, pm = pm)
CFMR
#> [1] 0.006242431 -0.020703369 -0.072449040 -0.050660290 -0.040969284
#> [6] -0.028959753 -0.029889636 -0.015320422 -0.032306259 -0.017038430
#> [11] -0.004761586 0.057950623 0.064189392 0.051092006 0.022624526
#> [16] 0.036014037 0.060445754 0.058259580 0.050194423 -0.014834322