Skip to contents

The following data sets are part of this package:

CapitalizationMarket capitalization of domestic companies,
cars2Data for various car models,
DowJones30Down Jones 30 stocks,
HedgeFundHennessee Hedge Fund Indices,
msft.datDaily Microsoft OHLC prices and volume,
nyseNYSE composite Index,
PensionFundSwiss Pension Fund LPP-2005,
swissEconomySwiss Economic Data,
SWXLPSwiss Pension Fund LPP-2000,
usdthbTick data of USD to THB.

Details

All datasets are data frames. A brief description is given below.

Capitalization:
Capitalization contains market capitalization of 13 domestic companies for 6 years (from 2003 to 2008) in USD millions. Each row contains the data for one company/stock exchange.

cars2:
cars2 contains columns rowNames (model), Price, Country, Reliability, Mileage, (Type), (Weight), Disp. (engine displacement) and HP (net horsepower) reprsenting the indicated properties of 60 car models.

DowJones30:
DowJones30 contains 2529 daily observations from the ‘Dow Jones 30’ Index series. The first row contains the dates (from 1990-12-31 to 2001-01-02). Each of the remaining thirty columns represents the closing price of a stock in the Index.

HedgeFund:
HedgeFund contains monthly percentage returns of 16 hedge fund strategies from Hennessee Group LLC for year 2005.

msft.dat:
msft.dat contains daily prices (open, high, low and close) and volumes for the Microsoft stocks. It is a data frame with column names "%Y-%m-%d", "Open", "High", "Low", "Close", "Volume".

Note: there is a dataset, MSFT, in package timeSeries which contains the same data but is of class "timeSeries".

nyse:
nyse contains daily records of the NYSE Composite Index from 1966-01-04 to 2002-12-31 (9311 observations). The data is in column "NYSE" (second column). The first column contains the dates.

PensionFund:
PensionFund is a daily data set of the Swiss pension fund benchmark LPP-2005. The data set ranges from 2005-11-01 to 2007-04-11. The columns are named: SBI, SPI, SII, LMI, MPI, ALT, LPP25, LPP40, LPP60.

swissEconomy:
swissEconomy contains the GDP per capita (GDPR), exports (EXPO), imports (IMPO), interest rates (INTR), inflation (INFL), unemployment (UNEM) and population (POPU) foryears 1964 to 1999 for Switzerland.

SWXLP:
SWXLP is a daily data set of the Swiss pension fund benchmark LPP-2000. The data set ranges from 2000-01-03 to 2007-05-08 (1917 observations). The first column contains the dates. The remaining columns are named: SBI, SPI, SII, LP25, LP40, LP60.

usdthb:
usdthb Tick data of US Dollar (USD) in Thailand Bhat (THB) collected from Reuters. The date is in the first column in YYYYMMDDhhmm format. The remaining columns contain: delay time (DELAY), contributor (CONTRIBUTOR), bid (BID) and ask (ASK) prices, and quality flag (FLAG). It covers the Asia FX crisis in June 1997.

References

Capitalization:
World Federation of Stock Exchanges, http://www.world-exchanges.org/statistics.

cars2:
Derived from the car90 dataset within the rpart package. The car90 dataset is based on the car.all dataset in S-PLUS. Original data comes from: April 1990, Consumer Reports Magazine, pages 235-255, 281-285 and 287-288.

DowJones30
https://www.yahoo.com.

HedgeFund:
http://www.hennesseegroup.com/indices/returns/year/2005.html.

msft.dat:
https://www.yahoo.com.

nyse:
https://www.nyse.com.

PensionFund:
SBI, SPI, SII: SIX (Swiss Exchange Zurich); LPP25, LPP40, LPP60: Banque Pictet Geneva; LMI, MPI, ALT: Recalculated from the indices and benchmarks.

swissEconomy:
https://www.oecd.org/ and https://www.imf.org/.

SWXLP:
SBI, SPI, SII: SIX (Swiss Exchange Zurich); LPP25, LPP40, LPP60: Banque Pictet Geneva.

usdthb:
Reuters Select Feed Terminal (1997).

Examples

## Plot DowJones30 Example Data Set
series <- timeSeries::as.timeSeries(DowJones30)
head(series)
#> GMT 
#>              AA  AXP     T    BA  CAT    C   KO    DD    EK   XOM   GE    GM
#> 1990-12-31 5.92 4.70 14.67 21.77 9.30 1.87 9.88 13.15 23.02 12.09 4.63 19.72
#> 1991-01-02 5.92 4.70 14.67 21.77 9.30 1.87 9.88 13.15 23.02 12.09 4.63 19.72
#> 1991-01-03 5.88 4.73 14.73 21.71 9.15 1.87 9.60 12.83 22.95 12.15 4.53 19.57
#> 1991-01-04 5.76 4.73 14.79 22.50 9.00 1.92 9.85 13.06 22.74 12.27 4.47 19.00
#> 1991-01-07 5.72 4.58 14.67 21.65 8.87 1.89 9.69 12.83 22.11 12.12 4.40 18.35
#> 1991-01-08 5.63 4.53 14.73 21.34 9.05 1.85 9.60 12.60 22.18 12.09 4.44 18.28
#>             HWP   HD  HON INTC   IBM    IP  JPM  JNJ  MCD   MRK MSFT   MMM
#> 1990-12-31 3.91 2.80 5.70 1.20 27.86 20.45 2.67 7.31 7.08 11.83 2.08 31.41
#> 1991-01-02 3.91 2.80 5.70 1.20 27.86 20.45 2.67 7.31 7.08 11.83 2.08 31.41
#> 1991-01-03 3.91 2.74 5.67 1.20 27.95 20.21 2.67 7.23 6.99 11.45 2.09 30.90
#> 1991-01-04 3.85 2.75 5.65 1.20 27.86 20.50 2.69 7.18 7.02 11.27 2.11 30.80
#> 1991-01-07 3.88 2.65 5.50 1.19 27.39 20.45 2.58 6.96 6.80 10.97 2.08 30.43
#> 1991-01-08 3.90 2.59 5.47 1.18 27.08 20.26 2.58 7.02 6.83 11.01 2.04 29.65
#>               MO    PG  SBC  UTX  WMT  DIS
#> 1990-12-31 10.55 20.91 9.75 9.31 7.05 7.86
#> 1991-01-02 10.55 20.91 9.75 9.31 7.05 7.86
#> 1991-01-03 10.27 20.70 9.64 9.19 7.05 7.82
#> 1991-01-04 10.24 20.48 9.56 9.24 6.97 7.79
#> 1991-01-07 10.08 20.05 9.40 8.95 6.82 7.58
#> 1991-01-08 10.11 20.02 9.32 8.78 6.85 7.41
plot(series[,1:6], type = "l")


## msft.dat contains (almost?) the same data as MSFT in package timeSeries
data(MSFT, package = "timeSeries")

m1 <- as.matrix(msft.dat[, -1]) # drop date stamps in column 1
m2 <- as.matrix(MSFT)
all.equal(m1, m2, check.attributes = FALSE) # TRUE
#> [1] TRUE
## compare the dates:
all.equal(format(msft.dat[ , 1]), format(time(MSFT))) # TRUE
#> [1] TRUE