Generalized Hyperbolic Distribution
dist-gh.Rd
Density, distribution function, quantile function and random generation for the generalized hyperbolic distribution.
Usage
dgh(x, alpha = 1, beta = 0, delta = 1, mu = 0, lambda = -1/2, log = FALSE)
pgh(q, alpha = 1, beta = 0, delta = 1, mu = 0, lambda = -1/2)
qgh(p, alpha = 1, beta = 0, delta = 1, mu = 0, lambda = -1/2)
rgh(n, alpha = 1, beta = 0, delta = 1, mu = 0, lambda = -1/2)
Arguments
- x, q
a numeric vector of quantiles.
- p
a numeric vector of probabilities.
- n
number of observations.
- alpha
first shape parameter.
- beta
second shape parameter, should in the range
(0, alpha).
- delta
scale parameter, must be zero or positive.
- mu
location parameter, by default 0.
- lambda
defines the sublclass, by default \(-1/2\).
- log
a logical flag by default
FALSE
. Should labels and a main title drawn to the plot?
Details
dgh
gives the density,
pgh
gives the distribution function,
qgh
gives the quantile function, and
rgh
generates random deviates.
The meanings of the parameters correspond to the first
parameterization, pm=1
, which is the default parameterization
for this distribution.
In the second parameterization, pm=2
, alpha
and
beta
take the meaning of the shape parameters (usually named)
zeta
and rho
.
In the third parameterization, pm=3
, alpha
and
beta
take the meaning of the shape parameters (usually named)
xi
and chi
.
In the fourth parameterization, pm=4
, alpha
and
beta
take the meaning of the shape parameters (usually named)
a.bar
and b.bar
.
The generator rgh
is based on the GH algorithm given
by Scott (2004).
References
Atkinson, A.C. (1982); The simulation of generalized inverse Gaussian and hyperbolic random variables, SIAM J. Sci. Stat. Comput. 3, 502–515.
Barndorff-Nielsen O. (1977); Exponentially decreasing distributions for the logarithm of particle size, Proc. Roy. Soc. Lond., A353, 401–419.
Barndorff-Nielsen O., Blaesild, P. (1983); Hyperbolic distributions. In Encyclopedia of Statistical Sciences, Eds., Johnson N.L., Kotz S. and Read C.B., Vol. 3, pp. 700–707. New York: Wiley.
Raible S. (2000); Levy Processes in Finance: Theory, Numerics and Empirical Facts, PhD Thesis, University of Freiburg, Germany, 161 pages.
Examples
## rgh -
set.seed(1953)
r = rgh(5000, alpha = 1, beta = 0.3, delta = 1)
plot(r, type = "l", col = "steelblue",
main = "gh: alpha=1 beta=0.3 delta=1")
## dgh -
# Plot empirical density and compare with true density:
hist(r, n = 25, probability = TRUE, border = "white", col = "steelblue")
x = seq(-5, 5, 0.25)
lines(x, dgh(x, alpha = 1, beta = 0.3, delta = 1))
## pgh -
# Plot df and compare with true df:
plot(sort(r), (1:5000/5000), main = "Probability", col = "steelblue")
lines(x, pgh(x, alpha = 1, beta = 0.3, delta = 1))
## qgh -
# Compute Quantiles:
qgh(pgh(seq(-5, 5, 1), alpha = 1, beta = 0.3, delta = 1),
alpha = 1, beta = 0.3, delta = 1)
#> [1] -5.000001e+00 -4.000000e+00 -3.000006e+00 -1.999996e+00 -1.000010e+00
#> [6] -8.504243e-06 1.000003e+00 1.999972e+00 3.000000e+00 3.999998e+00
#> [11] 4.999976e+00