Generalized Hyperbolic Distribution Moments
dist-ghMoments.Rd
Calculates moments of the generalized hyperbolic distribution.
Usage
ghMean(alpha=1, beta=0, delta=1, mu=0, lambda=-1/2)
ghVar(alpha=1, beta=0, delta=1, mu=0, lambda=-1/2)
ghSkew(alpha=1, beta=0, delta=1, mu=0, lambda=-1/2)
ghKurt(alpha=1, beta=0, delta=1, mu=0, lambda=-1/2)
ghMoments(order, type = c("raw", "central", "mu"),
alpha = 1, beta=0, delta=1, mu=0, lambda=-1/2)
Arguments
- alpha
numeric value, the first shape parameter.
- beta
numeric value, the second shape parameter in the range
(0, alpha)
.- delta
numeric value, the scale parameter, must be zero or positive.
- mu
numeric value, the location parameter, by default 0.
- lambda
numeric value, defines the sublclass, by default \(-1/2\).
- order
an integer value, the order of the moment.
- type
a character value,
"raw"
gives the moments about zero,"central"
gives the central moments about the mean, and"mu"
gives the moments about the location parametermu
.
Value
a named numerical value. The name is one
of mean
, var
, skew
, or kurt
, obtained by
dropping the nig
prefix from the name of the corresponding
function and lowercasing it.
for ghMoments
, the name is obtained by paste0("m", order, type)
.
References
Scott, D. J., Wuertz, D. and Tran, T. T. (2008) Moments of the Generalized Hyperbolic Distribution. Preprint.
Examples
## ghMean -
ghMean(alpha=1.1, beta=0.1, delta=0.8, mu=-0.3, lambda=1)
#> mean
#> -0.08410502
## ghKurt -
ghKurt(alpha=1.1, beta=0.1, delta=0.8, mu=-0.3, lambda=1)
#> kurt
#> 2.044599
## ghMoments -
ghMoments(4,
alpha=1.1, beta=0.1, delta=0.8, mu=-0.3, lambda=1)
#> m4raw
#> 23.96634
ghMoments(4, "central",
alpha=1.1, beta=0.1, delta=0.8, mu=-0.3, lambda=1)
#> m4central
#> 24.18639