Generalized Hyperbolic Distribution Moments
dist-ghMoments.RdCalculates moments of the generalized hyperbolic distribution.
Usage
ghMean(alpha=1, beta=0, delta=1, mu=0, lambda=-1/2)
ghVar(alpha=1, beta=0, delta=1, mu=0, lambda=-1/2)
ghSkew(alpha=1, beta=0, delta=1, mu=0, lambda=-1/2)
ghKurt(alpha=1, beta=0, delta=1, mu=0, lambda=-1/2)
ghMoments(order, type = c("raw", "central", "mu"),
alpha = 1, beta=0, delta=1, mu=0, lambda=-1/2)Arguments
- alpha
numeric value, the first shape parameter.
- beta
numeric value, the second shape parameter in the range
(0, alpha).- delta
numeric value, the scale parameter, must be zero or positive.
- mu
numeric value, the location parameter, by default 0.
- lambda
numeric value, defines the sublclass, by default \(-1/2\).
- order
an integer value, the order of the moment.
- type
a character value,
"raw"gives the moments about zero,"central"gives the central moments about the mean, and"mu"gives the moments about the location parametermu.
Value
a named numerical value. The name is one
of mean, var, skew, or kurt, obtained by
dropping the nig prefix from the name of the corresponding
function and lowercasing it.
for ghMoments, the name is obtained by paste0("m", order, type).
References
Scott, D. J., Wuertz, D. and Tran, T. T. (2008) Moments of the Generalized Hyperbolic Distribution. Preprint.
Examples
## ghMean -
ghMean(alpha=1.1, beta=0.1, delta=0.8, mu=-0.3, lambda=1)
#> mean
#> -0.08410502
## ghKurt -
ghKurt(alpha=1.1, beta=0.1, delta=0.8, mu=-0.3, lambda=1)
#> kurt
#> 2.044599
## ghMoments -
ghMoments(4,
alpha=1.1, beta=0.1, delta=0.8, mu=-0.3, lambda=1)
#> m4raw
#> 23.96634
ghMoments(4, "central",
alpha=1.1, beta=0.1, delta=0.8, mu=-0.3, lambda=1)
#> m4central
#> 24.18639