Generalized Hyperbolic Student-t distribution
dist-ght.Rd
Density, distribution function, quantile function and random generation for the generalized hyperbolic Student-t distribution.
Usage
dght(x, beta = 0.1, delta = 1, mu = 0, nu = 10, log = FALSE)
pght(q, beta = 0.1, delta = 1, mu = 0, nu = 10)
qght(p, beta = 0.1, delta = 1, mu = 0, nu = 10)
rght(n, beta = 0.1, delta = 1, mu = 0, nu = 10)
Arguments
- x, q
a numeric vector of quantiles.
- p
a numeric vector of probabilities.
- n
number of observations.
- beta
numeric value, the skewness parameter in the range
(0, alpha)
.- delta
numeric value, the scale parameter, must be zero or positive.
- mu
numeric value, the location parameter, by default 0.
- nu
-
a numeric value, the number of degrees of freedom. Note,
alpha
takes the limit ofabs(beta)
, andlambda=-nu/2
. - log
a logical, if TRUE, probabilities
p
are given aslog(p)
.
Details
dght
gives the density,
pght
gives the distribution function,
qght
gives the quantile function, and
rght
generates random deviates.
The parameters are as in the first parameterization.
References
Atkinson, A.C. (1982); The simulation of generalized inverse Gaussian and hyperbolic random variables, SIAM J. Sci. Stat. Comput. 3, 502–515.
Barndorff-Nielsen O. (1977); Exponentially decreasing distributions for the logarithm of particle size, Proc. Roy. Soc. Lond., A353, 401–419.
Barndorff-Nielsen O., Blaesild, P. (1983); Hyperbolic distributions. In Encyclopedia of Statistical Sciences, Eds., Johnson N.L., Kotz S. and Read C.B., Vol. 3, pp. 700–707. New York: Wiley.
Raible S. (2000); Levy Processes in Finance: Theory, Numerics and Empirical Facts, PhD Thesis, University of Freiburg, Germany, 161 pages.