GHT distribution fit
dist-ghtFit.Rd
Estimates the distributional parameters for a generalized hyperbolic Student-t distribution.
Usage
ghtFit(x, beta = 0.1, delta = 1, mu = 0, nu = 10,
scale = TRUE, doplot = TRUE, span = "auto", trace = TRUE,
title = NULL, description = NULL, ...)
Arguments
- beta, delta, mu
numeric values.
beta
is the skewness parameter in the range(0, alpha)
;delta
is the scale parameter, must be zero or positive;mu
is the location parameter, by default 0. These are the parameters in the first parameterization.- nu
defines the number of degrees of freedom. Note,
alpha
takes the limit ofabs(beta)
, andlambda=-nu/2
.- x
a numeric vector.
- scale
a logical flag, by default
TRUE
. Should the time series be scaled by its standard deviation to achieve a more stable optimization?- doplot
a logical flag. Should a plot be displayed?
- span
x-coordinates for the plot, by default 100 values automatically selected and ranging between the 0.001, and 0.999 quantiles. Alternatively, you can specify the range by an expression like
span=seq(min, max, times = n)
, where,min
andmax
are the left and right endpoints of the range, andn
gives the number of the intermediate points.- trace
a logical flag. Should the parameter estimation process be traced?
- title
a character string which allows for a project title.
- description
a character string which allows for a brief description.
- ...
parameters to be parsed.
Details
The function nlm
is used to minimize the "negative"
log-likelihood function. nlm
carries out a minimization
using a Newton-type algorithm.
Value
an object from class "fDISTFIT"
.
Slot fit
is a list, currently with components
estimate
, minimum
and code
.
Examples
## ghtFit -
# Simulate Random Variates:
set.seed(1953)
## ghtFit -
# Fit Parameters: