GHT distribution fit
dist-ghtFit.RdEstimates the distributional parameters for a generalized hyperbolic Student-t distribution.
Usage
ghtFit(x, beta = 0.1, delta = 1, mu = 0, nu = 10,
scale = TRUE, doplot = TRUE, span = "auto", trace = TRUE,
title = NULL, description = NULL, ...)Arguments
- beta, delta, mu
numeric values.
betais the skewness parameter in the range(0, alpha);deltais the scale parameter, must be zero or positive;muis the location parameter, by default 0. These are the parameters in the first parameterization.- nu
defines the number of degrees of freedom. Note,
alphatakes the limit ofabs(beta), andlambda=-nu/2.- x
a numeric vector.
- scale
a logical flag, by default
TRUE. Should the time series be scaled by its standard deviation to achieve a more stable optimization?- doplot
a logical flag. Should a plot be displayed?
- span
x-coordinates for the plot, by default 100 values automatically selected and ranging between the 0.001, and 0.999 quantiles. Alternatively, you can specify the range by an expression like
span=seq(min, max, times = n), where,minandmaxare the left and right endpoints of the range, andngives the number of the intermediate points.- trace
a logical flag. Should the parameter estimation process be traced?
- title
a character string which allows for a project title.
- description
a character string which allows for a brief description.
- ...
parameters to be parsed.
Details
The function nlm is used to minimize the "negative"
log-likelihood function. nlm carries out a minimization
using a Newton-type algorithm.
Value
an object from class "fDISTFIT".
Slot fit is a list, currently with components
estimate, minimum and code.
Examples
## ghtFit -
# Simulate Random Variates:
set.seed(1953)
## ghtFit -
# Fit Parameters: