Hyperbolic distribution
dist-hyp.Rd
Density, distribution function, quantile function and random generation for the hyperbolic distribution.
Usage
dhyp(x, alpha = 1, beta = 0, delta = 1, mu = 0, pm = 1, log = FALSE)
phyp(q, alpha = 1, beta = 0, delta = 1, mu = 0, pm = 1, ...)
qhyp(p, alpha = 1, beta = 0, delta = 1, mu = 0, pm = 1, ...)
rhyp(n, alpha = 1, beta = 0, delta = 1, mu = 0, pm = 1)
Arguments
- x, q
numeric vector of quantiles.
- p
numeric vector of probabilities.
- n
number of observations.
- alpha
-
shape parameter, a positive number.
alpha
can also be a vector of length four, containingalpha
,beta
,delta
andmu
(in that order). - beta
-
skewness parameter,
abs(beta)
is in the range(0, alpha)
. - delta
scale parameter, must be zero or positive.
- mu
location parameter, by default 0.
- pm
-
integer number specifying the parameterisation, one of
1
,2
,3
, or4
. The default is the first parameterization. - log
-
a logical value, if
TRUE
, probabilitiesp
are given aslog(p)
. - ...
arguments to be passed to the function
integrate
.
Details
dhyp
gives the density,
phyp
gives the distribution function,
qhyp
gives the quantile function, and
rhyp
generates random deviates.
The meaning of the parameters given above corresponds to the first
parameterization, pm = 1
, which is the default.
In the second parameterization, pm=2
, alpha
and
beta
take the meaning of the shape parameters (usually named)
zeta
and rho
.
In the third parameterization, pm=3
, alpha
and
beta
take the meaning of the shape parameters (usually named)
xi
and chi
.
In the fourth parameterization, pm=4
, alpha
and
beta
take the meaning of the shape parameters (usually named)
a.bar
and b.bar
.
The generator rhyp
is based on the HYP algorithm given by
Atkinson (1982).
References
Atkinson, A.C. (1982); The simulation of generalized inverse Gaussian and hyperbolic random variables, SIAM J. Sci. Stat. Comput. 3, 502–515.
Barndorff-Nielsen O. (1977); Exponentially decreasing distributions for the logarithm of particle size, Proc. Roy. Soc. Lond., A353, 401–419.
Barndorff-Nielsen O., Blaesild, P. (1983); Hyperbolic distributions. In Encyclopedia of Statistical Sciences, Eds., Johnson N.L., Kotz S. and Read C.B., Vol. 3, pp. 700–707. New York: Wiley.
Raible S. (2000); Levy Processes in Finance: Theory, Numerics and Empirical Facts, PhD Thesis, University of Freiburg, Germany, 161 pages.
Examples
## hyp -
set.seed(1953)
r = rhyp(5000, alpha = 1, beta = 0.3, delta = 1)
plot(r, type = "l", col = "steelblue",
main = "hyp: alpha=1 beta=0.3 delta=1")
## hyp -
# Plot empirical density and compare with true density:
hist(r, n = 25, probability = TRUE, border = "white", col = "steelblue")
x = seq(-5, 5, 0.25)
lines(x, dhyp(x, alpha = 1, beta = 0.3, delta = 1))
## hyp -
# Plot df and compare with true df:
plot(sort(r), (1:5000/5000), main = "Probability", col = "steelblue")
lines(x, phyp(x, alpha = 1, beta = 0.3, delta = 1))
## hyp -
# Compute Quantiles:
qhyp(phyp(seq(-5, 5, 1), alpha = 1, beta = 0.3, delta = 1),
alpha = 1, beta = 0.3, delta = 1)
#> [1] -5.000017e+00 -3.999997e+00 -3.000000e+00 -2.000023e+00 -1.000003e+00
#> [6] -2.344483e-06 1.000000e+00 2.000000e+00 2.999997e+00 3.999989e+00
#> [11] 5.000002e+00