Hyperbolic mode
dist-hypMode.Rd
Computes the mode of the hyperbolic distribution.
Arguments
- alpha
-
shape parameter, a positive number.
alpha
can also be a vector of length four, containingalpha
,beta
,delta
andmu
(in that order). - beta
-
skewness parameter,
abs(beta)
is in the range(0, alpha)
. - delta
scale parameter, must be zero or positive.
- mu
location parameter, by default 0.
- pm
-
an integer value between
1
and4
for the selection of the parameterization. The default takes the first parameterization.
Value
a numeric value, the mode in the appropriate parameterization for the hyperbolic distribution.
References
Atkinson, A.C. (1982); The simulation of generalized inverse Gaussian and hyperbolic random variables, SIAM J. Sci. Stat. Comput. 3, 502–515.
Barndorff-Nielsen O. (1977); Exponentially decreasing distributions for the logarithm of particle size, Proc. Roy. Soc. Lond., A353, 401–419.
Barndorff-Nielsen O., Blaesild, P. (1983); Hyperbolic distributions. In Encyclopedia of Statistical Sciences, Eds., Johnson N.L., Kotz S. and Read C.B., Vol. 3, pp. 700–707. New York: Wiley.
Raible S. (2000); Levy Processes in Finance: Theory, Numerics and Empirical Facts, PhD Thesis, University of Freiburg, Germany, 161 pages.