Hyperbolic distribution moments
dist-hypMoments.RdCalculates moments of the hyperbolic distribution function.
Usage
hypMean(alpha=1, beta=0, delta=1, mu=0)
hypVar(alpha=1, beta=0, delta=1, mu=0)
hypSkew(alpha=1, beta=0, delta=1, mu=0)
hypKurt(alpha=1, beta=0, delta=1, mu=0)
hypMoments(order, type = c("raw", "central", "mu"),
alpha=1, beta=0, delta=1, mu=0)Arguments
- alpha
numeric value, the first shape parameter.
- beta
numeric value, the second shape parameter in the range
(0, alpha).- delta
numeric value, the scale parameter, must be zero or positive.
- mu
numeric value, the location parameter, by default 0.
- order
an integer value, the order of the moment.
- type
a character string,
"raw"returns the moments about zero,"central"returns the central moments about the mean, and"mu"returns the moments about the location parametermu.
Value
a named numerical value. The name is one
of mean, var, skew, or kurt, obtained by
dropping the hyp prefix from the name of the corresponding
function and lowercasing it.
for hypMoments, the name is obtained by paste0("m", order, type).
References
Scott, D. J., Wuertz, D. and Tran, T. T. (2008) Moments of the Generalized Hyperbolic Distribution. Preprint.
Examples
## hypMean -
hypMean(alpha=1.1, beta=0.1, delta=0.8, mu=-0.3)
#> mean
#> -0.08410502
## ghKurt -
hypKurt(alpha=1.1, beta=0.1, delta=0.8, mu=-0.3)
#> kurt
#> 2.044599
## hypMoments -
hypMoments(4, alpha=1.1, beta=0.1, delta=0.8, mu=-0.3)
#> m4raw
#> 23.96634
hypMoments(4, "central", alpha=1.1, beta=0.1, delta=0.8, mu=-0.3)
#> m4central
#> 24.18639