Standardized generalized hyperbolic Student-t Distribution
dist-sght.Rd
Density, distribution function, quantile function and random generation for the standardized generalized hyperbolic Student-t distribution.
Usage
dsght(x, beta = 0.1, delta = 1, mu = 0, nu = 10, log = FALSE)
psght(q, beta = 0.1, delta = 1, mu = 0, nu = 10)
qsght(p, beta = 0.1, delta = 1, mu = 0, nu = 10)
rsght(n, beta = 0.1, delta = 1, mu = 0, nu = 10)
Arguments
- x, q
a numeric vector of quantiles.
- p
a numeric vector of probabilities.
- n
number of observations.
- beta
-
numeric value,
beta
is the skewness parameter in the range(0, alpha)
. - delta
-
numeric value, the scale parameter, must be zero or positive.
- mu
-
numeric value, the location parameter, by default 0.
- nu
-
a numeric value, the number of degrees of freedom. Note,
alpha
takes the limit ofabs(beta)
, andlambda=-nu/2
. - log
a logical, if TRUE, probabilities
p
are given aslog(p)
.
Details
dsght
gives the density,
psght
gives the distribution function,
qsght
gives the quantile function, and
rsght
generates random deviates.
These are the parameters in the first parameterization.
Examples
## rsght -
set.seed(1953)
r = rsght(5000, beta = 0.1, delta = 1, mu = 0, nu = 10)
plot(r, type = "l", col = "steelblue",
main = "gh: zeta=1 rho=0.5 lambda=1")
## dsght -
# Plot empirical density and compare with true density:
hist(r, n = 50, probability = TRUE, border = "white", col = "steelblue")
x = seq(-5, 5, length = 501)
lines(x, dsght(x, beta = 0.1, delta = 1, mu = 0, nu = 10))
## psght -
# Plot df and compare with true df:
plot(sort(r), (1:5000/5000), main = "Probability", col = "steelblue")
lines(x, psght(x, beta = 0.1, delta = 1, mu = 0, nu = 10))
## qsght -
# Compute Quantiles:
round(qsght(psght(seq(-5, 5, 1), beta = 0.1, delta = 1, mu = 0, nu =10),
beta = 0.1, delta = 1, mu = 0, nu = 10), 4)
#> [1] -5 -4 -3 -2 -1 0 1 2 3 4 5