Density, distribution function, quantile function and random
generation from smoothing spline estimates.
Usage
dssd(x, param, log = FALSE)
pssd(q, param)
qssd(p, param)
rssd(n, param)
Arguments
- x, q
a numeric vector of quantiles.
- p
a numeric vector of probabilities.
- n
number of observations.
- param
an object as returned by the function ssdFit
.
- log
a logical flag by default FALSE
.
Should labels and a main title drawn to the plot?
Details
dssd
gives the density,
pssd
gives the distribution function,
qssd
gives the quantile function, and
rssd
generates random deviates.
Author
Diethelm Wuertz, Chong Gu for the underlying gss
package.
References
Gu, C. (2002),
Smoothing Spline ANOVA Models,
New York Springer–Verlag.
Gu, C. and Wang, J. (2003),
Penalized likelihood density estimation:
Direct cross-validation and scalable approximation,
Statistica Sinica, 13, 811–826.
Examples
## ssdFit -
set.seed(1953)
r = rnorm(500)
hist(r, breaks = "FD", probability = TRUE,
col = "steelblue", border = "white")
## ssdFit -
param = ssdFit(r)
## dssd -
u = seq(min(r), max(r), len = 301)
v = dssd(u, param)
lines(u, v, col = "orange", lwd = 2)