Grid vector coordinates
matrix-gridVector.Rd
Creates rectangular grid coordinates from two vectors.
Details
The grid is obtained by pairing each element of y
with all
elements of x
. The X
and Y
coordinates of the
points are stored in separate vectors. This is convenient, for
example, for plotting. It can be useful also for brute force
optimisation or simulation.
If y
is NULL
, the default, then y = x
.
Examples
## a small grid vector with row and col transformations
gridVector(0:2)
#> $X
#> [1] 0 1 2 0 1 2 0 1 2
#>
#> $Y
#> [1] 0 0 0 1 1 1 2 2 2
#>
data.frame(gridVector(0:2))
#> X Y
#> 1 0 0
#> 2 1 0
#> 3 2 0
#> 4 0 1
#> 5 1 1
#> 6 2 1
#> 7 0 2
#> 8 1 2
#> 9 2 2
do.call("rbind", gridVector(0:2))
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
#> X 0 1 2 0 1 2 0 1 2
#> Y 0 0 0 1 1 1 2 2 2
gridVector(0:2, 0:3)
#> $X
#> [1] 0 1 2 0 1 2 0 1 2 0 1 2
#>
#> $Y
#> [1] 0 0 0 1 1 1 2 2 2 3 3 3
#>
## grid over a unit square
gridVector((0:10)/10) # equivalently: gridVector((0:10)/10, (0:10)/10)
#> $X
#> [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6
#> [19] 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2
#> [37] 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
#> [55] 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5
#> [73] 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1
#> [91] 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
#> [109] 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
#>
#> $Y
#> [1] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1
#> [19] 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3
#> [37] 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
#> [55] 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6
#> [73] 0.6 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8
#> [91] 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
#> [109] 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
#>