Correlation tests
test-correlationTest.Rd
Tests if two series are correlated.
Usage
correlationTest(x, y, method = c("pearson", "kendall", "spearman"),
title = NULL, description = NULL)
pearsonTest(x, y, title = NULL, description = NULL)
kendallTest(x, y, title = NULL, description = NULL)
spearmanTest(x, y, title = NULL, description = NULL)
Details
These functions test for association/correlation between paired samples based on the Pearson's product moment correlation coefficient (a.k.a. sample correlation), Kendall's tau, and Spearman's rho coefficients.
pearsonTest
, kendallTest
, and spearmanTest
are
wrappers of base R's cor.test
with simplified
interface. They provide 'exact' and approximate p-values for all
three alternatives (two-sided, less, and greater), as well as 95%
confidence intervals. This is particularly convenient in interactive
use.
Instead of calling the individual functions, one can use
correlationTest
and specify the required test with argument
method
.
Value
an object from class fHTEST
References
Conover, W. J. (1971); Practical nonparametric statistics, New York: John Wiley & Sons.
Lehmann E.L. (1986); Testing Statistical Hypotheses, John Wiley and Sons, New York.
Examples
x <- rnorm(50)
y <- rnorm(50)
correlationTest(x, y, "pearson")
#>
#> Title:
#> Pearson's Correlation Test
#>
#> Test Results:
#> PARAMETER:
#> Degrees of Freedom: 48
#> SAMPLE ESTIMATES:
#> Correlation: 0.267
#> STATISTIC:
#> t: 1.9199
#> P VALUE:
#> Alternative Two-Sided: 0.06082
#> Alternative Less: 0.9696
#> Alternative Greater: 0.03041
#> CONFIDENCE INTERVAL:
#> Two-Sided: -0.0122, 0.5077
#> Less: -1, 0.4728
#> Greater: 0.0337, 1
#>
correlationTest(x, y, "kendall")
#>
#> Title:
#> Kendall's tau Correlation Test
#>
#> Test Results:
#> SAMPLE ESTIMATES:
#> tau: 0.1559
#> STATISTIC:
#> z: 1.5977
#> T | Exact: 708
#> P VALUE:
#> Alternative Two-Sided: 0.1101
#> Alternative Two-Sided | Exact: 0.1123
#> Alternative Less: 0.9449
#> Alternative Less | Exact: 0.9457
#> Alternative Greater: 0.05506
#> Alternative Greater | Exact: 0.05615
#>
spearmanTest(x, y)
#>
#> Title:
#> Spearman's rho Correlation Test
#>
#> Test Results:
#> SAMPLE ESTIMATES:
#> rho: 0.2346
#> STATISTIC:
#> S: 15940
#> P VALUE:
#> Alternative Two-Sided: 0.1011
#> Alternative Less: 0.9495
#> Alternative Greater: 0.05053
#>