Skew generalized error distribution parameter estimation
dist-sgedFit.RdFunction to fit the parameters of the skew generalized error distribution.
Value
a list with the following components:
- par
the best set of parameters found;
- objective
the value of objective corresponding to
par;- convergence
an integer code. 0 indicates successful convergence;
- message
a character string giving any additional information returned by the optimizer, or NULL. For details, see PORT documentation;
- iterations
number of iterations performed;
- evaluations
number of objective function and gradient function evaluations.
References
Nelson D.B. (1991); Conditional Heteroscedasticity in Asset Returns: A New Approach, Econometrica, 59, 347–370.
Fernandez C., Steel M.F.J. (2000); On Bayesian Modelling of Fat Tails and Skewness, Preprint, 31 pages.
Examples
set.seed(1953)
r <- rsged(n = 1000)
sgedFit(r)
#> $par
#> mean sd nu xi
#> 0.01115429 1.00416120 1.92236744 1.48742248
#>
#> $objective
#> [1] 1390.069
#>
#> $convergence
#> [1] 0
#>
#> $iterations
#> [1] 24
#>
#> $evaluations
#> function gradient
#> 33 147
#>
#> $message
#> [1] "relative convergence (4)"
#>