Control GARCH fitting algorithms
garchFitControl.Rd
Control parameters for the GARCH fitting algorithms.
Usage
garchFitControl(
llh = c("filter", "internal", "testing"),
nlminb.eval.max = 2000,
nlminb.iter.max = 1500,
nlminb.abs.tol = 1.0e-20,
nlminb.rel.tol = 1.0e-14,
nlminb.x.tol = 1.0e-14,
nlminb.step.min = 2.2e-14,
nlminb.scale = 1,
nlminb.fscale = FALSE,
nlminb.xscale = FALSE,
sqp.mit = 200,
sqp.mfv = 500,
sqp.met = 2,
sqp.mec = 2,
sqp.mer = 1,
sqp.mes = 4,
sqp.xmax = 1.0e3,
sqp.tolx = 1.0e-16,
sqp.tolc = 1.0e-6,
sqp.tolg = 1.0e-6,
sqp.told = 1.0e-6,
sqp.tols = 1.0e-4,
sqp.rpf = 1.0e-4,
lbfgsb.REPORT = 10,
lbfgsb.lmm = 20,
lbfgsb.pgtol = 1e-14,
lbfgsb.factr = 1,
lbfgsb.fnscale = FALSE,
lbfgsb.parscale = FALSE,
nm.ndeps = 1e-14,
nm.maxit = 10000,
nm.abstol = 1e-14,
nm.reltol = 1e-14,
nm.alpha = 1.0,
nm.beta = 0.5,
nm.gamma = 2.0,
nm.fnscale = FALSE,
nm.parscale = FALSE)
Arguments
- llh
llh = c("filter", "internal", "testing")[1]
, defaults to"filter"
.
- nlminb.eval.max
maximum number of evaluations of the objective function, defaults to 200.
- nlminb.iter.max
maximum number of iterations, defaults to 150.
- nlminb.abs.tol
absolute tolerance, defaults to 1e-20.
- nlminb.rel.tol
relative tolerance, defaults to 1e-10.
- nlminb.x.tol
X tolerance, defaults to 1.5e-8.
- nlminb.fscale
defaults to FALSE.
- nlminb.xscale
defaulkts to FALSE.
- nlminb.step.min
minimum step size, defaults to 2.2e-14.
- nlminb.scale
defaults to 1.
- sqp.mit
maximum number of iterations, defaults to 200.
- sqp.mfv
maximum number of function evaluations, defaults to 500.
- sqp.met
specifies scaling strategy:
sqp.met=1 - no scaling,
sqp.met=2 - preliminary scaling in 1st iteration (default),
sqp.met=3 - controlled scaling,
sqp.met=4 - interval scaling,
sqp.met=5 - permanent scaling in all iterations.- sqp.mec
correction for negative curvature:
sqp.mec=1 - no correction,
sqp.mec=2 - Powell correction (default).- sqp.mer
restarts after unsuccessful variable metric updates:
sqp.mer=0 - no restarts,
sqp.mer=1 - standard restart.- sqp.mes
interpolation method selection in a line search:
sqp.mes=1 - bisection,
sqp.mes=2 - two point quadratic interpolation,
sqp.mes=3 - three point quadratic interpolation,
sqp.mes=4 - three point cubic interpolation (default).- sqp.xmax
maximum stepsize, defaults to 1.0e+3.
- sqp.tolx
tolerance for the change of the coordinate vector, defaults to 1.0e-16.
- sqp.tolc
tolerance for the constraint violation, defaults to 1.0e-6.
- sqp.tolg
tolerance for the Lagrangian function gradient, defaults to 1.0e-6.
- sqp.told
defaults to 1.0e-6.
- sqp.tols
defaults to 1.0e-4.
- sqp.rpf
value of the penalty coefficient, default to1.0D-4. The default velue may be relatively small. Therefore, larger value, say one, can sometimes be more suitable.
- lbfgsb.REPORT
-
the frequency of reports for the
"BFGS"
and"L-BFGS-B"
methods ifcontrol$trace
is positive. Defaults to every 10 iterations. - lbfgsb.lmm
an integer giving the number of BFGS updates retained in the
"L-BFGS-B"
method, It defaults to 5.- lbfgsb.factr
-
controls the convergence of the
"L-BFGS-B"
method. Convergence occurs when the reduction in the objective is within this factor of the machine tolerance. Default is 1e7, that is a tolerance of about 1.0e-8. - lbfgsb.pgtol
-
helps control the convergence of the
"L-BFGS-B"
method. It is a tolerance on the projected gradient in the current search direction. This defaults to zero, when the check is suppressed. - lbfgsb.fnscale
defaults to FALSE.
- lbfgsb.parscale
defaults to FALSE.
- nm.ndeps
a vector of step sizes for the finite-difference approximation to the gradient, on par/parscale scale. Defaults to 1e-3.
- nm.maxit
-
the maximum number of iterations. Defaults to 100 for the derivative-based methods, and 500 for
"Nelder-Mead"
. For"SANN"
maxit gives the total number of function evaluations. There is no other stopping criterion. Defaults to 10000. - nm.abstol
the absolute convergence tolerance. Only useful for non-negative functions, as a tolerance for reaching zero.
- nm.reltol
relative convergence tolerance. The algorithm stops if it is unable to reduce the value by a factor of
reltol * (abs(val) + reltol)
at a step. Defaults tosqrt(.Machine$double.eps)
, typically about 1e-8.- nm.alpha, nm.beta, nm.gamma
scaling parameters for the "Nelder-Mead" method. alpha is the reflection factor (default 1.0), beta the contraction factor (0.5), and gamma the expansion factor (2.0).
- nm.fnscale
an overall scaling to be applied to the value of fn and gr during optimization. If negative, turns the problem into a maximization problem. Optimization is performed on
fn(par) / nm.fnscale
.- nm.parscale
a vector of scaling values for the parameters. Optimization is performed on par/parscale and these should be comparable in the sense that a unit change in any element produces about a unit change in the scaled value.
Author
Diethelm Wuertz for the Rmetrics R-port,
R Core Team for the 'optim' R-port,
Douglas Bates and Deepayan Sarkar for the 'nlminb' R-port,
Bell-Labs for the underlying PORT Library,
Ladislav Luksan for the underlying Fortran SQP Routine,
Zhu, Byrd, Lu-Chen and Nocedal for the underlying L-BFGS-B Routine.