Utilities for Jordan matrices
jordan.RdUtility functions for work with the Jordan decompositions of matrices: create a block diagonal matrix of Jordan blocks, restore a matrix from its Jordan decomposition, locate specific chains.
Usage
Jordan_matrix(eigval, len.block)
from_Jordan(x, jmat, ...)
chain_ind(chainno, len.block)
chains_to_list(vectors, heights)Arguments
- eigval
- eigenvalues, a numeric or complex vector. 
- len.block
- lengths of Jordan chains, a vector of positive integers. 
- x
- generalised eigenvectors, a matrix with one column for each (generalised) eigenvector. 
- jmat
- a Jordan matrix. 
- chainno
- a vector of positive integers between 1 and - length(eigval)specifying which Jordan chains to locate, see Details.
- ...
- further arguments to pass on to - solve.
- vectors
- a matrix of generalised eigenvectors of a matrix. 
- heights
- a vector of chain lengths, - heights[i]is the length of the i-th chain.
Details
Jordan_matrix creates a Jordan matrix (block-diagonal matrix
  with Jordan blocks on the diagonal) whose i-th diagonal block
  corresponds to eigval[i] and is of size len.block[i].
  If len.block is missing, Jordan_matrix returns
  diag(eigenvalues).
from_Jordan computes the matrix whose Jordan decomposition is
  represented by arguments X (chains) and J (Jordan
  matrix). Conceptually, the result is equivalent to \(XJX^{-1}\) but
  without explicitly inverting matrices (currently the result is the
  transpose of solve(t(x), t(x %*% jmat), ...)).
chain_ind computes the columns of specified Jordan chains in a
  matrix of generalised eigenvectors. It is mostly internal function.
  If x is a matrix whose columns are generalised eigenvectors and
  the i-th Jordan chain is of length len.block[i], then this
  function gives the column numbers of x containing the specified
  chains.
  Note that chain_ind is not able to deduce the total number of
  eigenvalues. It is therefore an error to omit argument
  len.block when calling it.
chains_to_list converts the matrix vectors into a list
  of matrices. The i-th element of this list is a matrix whose columns
  are the vectors in the i-th chain.
Value
for Jordan_matrix, a matrix with the specified Jordan blocks on
  its diagonal.
for from_Jordan, the matrix with the specified Jordan
  decomposition.
for chain_ind, a vector of positive integers giving the columns
  of the requested chains.
for chains_to_list, a list of matrices.
Examples
## single Jordan blocks
Jordan_matrix(4, 2) 
#>      [,1] [,2]
#> [1,]    4    1
#> [2,]    0    4
Jordan_matrix(5, 3)
#>      [,1] [,2] [,3]
#> [1,]    5    1    0
#> [2,]    0    5    1
#> [3,]    0    0    5
Jordan_matrix(6, 1)
#>      [,1]
#> [1,]    6
## a matrix with the above 3 blocks
Jordan_matrix(c(4, 5, 6), c(2, 3, 1))
#>      [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,]    4    1    0    0    0    0
#> [2,]    0    4    0    0    0    0
#> [3,]    0    0    5    1    0    0
#> [4,]    0    0    0    5    1    0
#> [5,]    0    0    0    0    5    0
#> [6,]    0    0    0    0    0    6
## a matrix with a 2x2 Jordan block for eval 1 and two simple 0 eval's
m <- make_mcmatrix(eigval = c(1), co = cbind(c(1,1,1,1), c(0,1,0,0)),
                     dim = 4, len.block = c(2))
m
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    1    0    0
#> [2,]   -1    2    0    0
#> [3,]    0    1    0    0
#> [4,]    0    1    0    0
m.X <- cbind(c(1,1,1,1), c(0,1,0,0), c(0,0,1,0), c(0,0,0,1))
m.X
#>      [,1] [,2] [,3] [,4]
#> [1,]    1    0    0    0
#> [2,]    1    1    0    0
#> [3,]    1    0    1    0
#> [4,]    1    0    0    1
m.J <- cbind(c(1,0,0,0), c(1,1,0,0), rep(0,4), rep(0,4))
m.J
#>      [,1] [,2] [,3] [,4]
#> [1,]    1    1    0    0
#> [2,]    0    1    0    0
#> [3,]    0    0    0    0
#> [4,]    0    0    0    0
from_Jordan(m.X, m.J)          # == m
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    1    0    0
#> [2,]   -1    2    0    0
#> [3,]    0    1    0    0
#> [4,]    0    1    0    0
m.X %*% m.J %*% solve(m.X) # == m
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    1    0    0
#> [2,]   -1    2    0    0
#> [3,]    0    1    0    0
#> [4,]    0    1    0    0
all(m == from_Jordan(m.X, m.J)) && all(m == m.X %*% m.J %*% solve(m.X))
#> [1] TRUE
## TRUE
## which column(s) in m.X correspond to 1st Jordan block?
chain_ind(1, c(2,1,1)) # c(1, 2) since 2x2 Jordan block
#> [1] 1 2
    
## which column(s) in m.X correspond to 2nd Jordan block?
chain_ind(2, c(2,1,1)) # 3, simple eval
#> [1] 3
## which column(s) in m.X correspond to 1st and 2nd Jordan blocks?
chain_ind(c(1, 2), c(2,1,1)) # c(1,2,3)
#> [1] 1 2 3
## non-contiguous subset are ok:
chain_ind(c(1, 3), c(2,1,1)) # c(1,2,4)
#> [1] 1 2 4
## split the chains into a list of matrices
chains_to_list(m.X, c(2,1,1))
#> [[1]]
#>      [,1] [,2]
#> [1,]    1    0
#> [2,]    1    1
#> [3,]    1    0
#> [4,]    1    0
#> 
#> [[2]]
#>      [,1]
#> [1,]    0
#> [2,]    0
#> [3,]    1
#> [4,]    0
#> 
#> [[3]]
#>      [,1]
#> [1,]    0
#> [2,]    0
#> [3,]    0
#> [4,]    1
#> 
    
m.X %*% m.J
#>      [,1] [,2] [,3] [,4]
#> [1,]    1    1    0    0
#> [2,]    1    2    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    0    0
m %*% m.X    # same
#>      [,1] [,2] [,3] [,4]
#> [1,]    1    1    0    0
#> [2,]    1    2    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    0    0
all(m.X %*% m.J == m %*% m.X)    # TRUE
#> [1] TRUE
        
m %*% c(1,1,1,1)    # = c(1,1,1,1),  evec for eigenvalue 1
#>      [,1]
#> [1,]    1
#> [2,]    1
#> [3,]    1
#> [4,]    1
m %*% c(0,1,0,0)    # gen.e.v. for eigenvalue 1
#>      [,1]
#> [1,]    1
#> [2,]    2
#> [3,]    1
#> [4,]    1
## indeed:
all( m %*% c(0,1,0,0) == c(0,1,0,0) + c(1,1,1,1) ) # TRUE    
#> [1] TRUE
## m X = X jordan.block
cbind(c(1,1,1,1), c(0,1,0,0)) %*% cbind(c(1,0), c(1,1))
#>      [,1] [,2]
#> [1,]    1    1
#> [2,]    1    2
#> [3,]    1    1
#> [4,]    1    1
m %*% cbind(c(1,1,1,1), c(0,1,0,0))
#>      [,1] [,2]
#> [1,]    1    1
#> [2,]    1    2
#> [3,]    1    1
#> [4,]    1    1