End-of-Period series, stats, and benchmarks
fin-periodical.Rd
Computes periodical statistics back to a given period.
Arguments
- x
-
an end-of-month recorded multivariate
"timeSeries"
object. One of the columns holds the benchmark series specified by argumentbenchmark
, - nYearsBack
-
a period string. How long back should the series be treated? Options include values from 1 year to 10 years, and year-to-date: "1y", "2y", "3y", "5y", "10y", "YTD".
- benchmark
-
an integer giving the position of the benchmark series in
x
. By default this is the last column ofx
.
Details
endOfPeriodSeries
extract the data for the last few years, as
specified by argument nYearsBack
.
endOfPeriodStats
computes basic exploratory statistics for the
last few years in the data.
endOfPeriodBenchmarks
returns benchmarks back to a given
period.
x
must be end of month data. Such series can be created using
functions like align
, alignDailySeries
,
daily2monthly
.
Value
for endOfPeriodSeries
, a "timeSeries"
,
for endOfPeriodStats
, a data frame,
for endOfPeriodBenchmarks
- currently NULL
(invisibly),
the function is unfinished.
Examples
## load series: column 1:3 Swiss market, column 8 (4) benchmark
x <- 100 * LPP2005REC[, c(1:3, 8)]
colnames(x)
#> [1] "SBI" "SPI" "SII" "LPP40"
x <- daily2monthly(x)
x
#> GMT
#> SBI SPI SII LPP40
#> 2005-11-30 0.0613921 -0.4037055 0.1711131 -0.1711835
#> 2005-12-31 -0.0456934 -0.3976473 -0.1299026 -0.1363995
#> 2006-01-31 -0.0152952 0.2736095 0.2868720 0.0133349
#> 2006-02-28 0.1071074 -1.1956984 0.1659104 -0.4868522
#> 2006-03-31 0.0232369 -0.0929251 -0.3742188 0.1108179
#> 2006-04-30 0.1330360 -0.2943741 0.2043796 -0.2990218
#> 2006-05-31 0.0233945 0.9323326 0.4888790 0.2653102
#> 2006-06-30 -0.0548353 1.4473814 0.0000000 0.1466710
#> 2006-07-31 0.0077800 0.0267236 0.4459707 0.0642307
#> 2006-08-31 0.0921518 -0.1466397 0.3750473 0.2126960
#> 2006-09-30 -0.1218862 0.1409431 0.3622828 0.0731769
#> 2006-10-31 0.2819157 -0.8238610 0.1611929 0.0018300
#> 2006-11-30 0.0453412 -0.8646808 0.0949359 -0.1401989
#> 2006-12-31 0.1144121 -0.1101976 -0.2031734 -0.0341003
#> 2007-01-31 -0.0306326 -0.0064900 0.0047200 -0.0512010
#> 2007-02-28 0.0380648 -1.1946524 -0.0285334 -0.3741769
#> 2007-03-31 -0.0305670 0.0497094 -0.1809619 0.0943400
#> 2007-04-30 0.0306279 -0.1044170 -0.1339276 -0.0586108
## Get the Monthly Series -
endOfPeriodSeries(x, nYearsBack="1y")
#> GMT
#> SBI SPI SII LPP40
#> 2006-05-31 0.0233945 0.9323326 0.4888790 0.2653102
#> 2006-06-30 -0.0548353 1.4473814 0.0000000 0.1466710
#> 2006-07-31 0.0077800 0.0267236 0.4459707 0.0642307
#> 2006-08-31 0.0921518 -0.1466397 0.3750473 0.2126960
#> 2006-09-30 -0.1218862 0.1409431 0.3622828 0.0731769
#> 2006-10-31 0.2819157 -0.8238610 0.1611929 0.0018300
#> 2006-11-30 0.0453412 -0.8646808 0.0949359 -0.1401989
#> 2006-12-31 0.1144121 -0.1101976 -0.2031734 -0.0341003
#> 2007-01-31 -0.0306326 -0.0064900 0.0047200 -0.0512010
#> 2007-02-28 0.0380648 -1.1946524 -0.0285334 -0.3741769
#> 2007-03-31 -0.0305670 0.0497094 -0.1809619 0.0943400
#> 2007-04-30 0.0306279 -0.1044170 -0.1339276 -0.0586108
## Compute the Monthly Statistics
endOfPeriodStats(x, nYearsBack="1y")
#> SBI SPI SII LPP40
#> nobs 12.00000000 12.00000000 12.00000000 12.00000000
#> NAs 0.00000000 0.00000000 0.00000000 0.00000000
#> Minimum -0.12188620 -1.19465240 -0.20317340 -0.37417690
#> Maximum 0.28191570 1.44738140 0.48887900 0.26531020
#> 1. Quartile -0.03058340 -0.31594502 -0.05488195 -0.05305345
#> 3. Quartile 0.05704385 0.07251783 0.36547392 0.10742275
#> Mean 0.03298057 -0.05448737 0.11553603 0.01666391
#> Median 0.02701120 -0.05545350 0.04982795 0.03303035
#> Sum -1.16378990 -1.16378990 -1.16378990 -1.16378990
#> SE Mean 0.02923163 0.21051500 0.07163748 0.04916552
#> LCL Mean -0.03135781 -0.51782776 -0.04213701 -0.09154867
#> UCL Mean 0.09731896 0.40885302 0.27320906 0.12487648
#> Variance 0.01025386 0.53179878 0.06158315 0.02900698
#> Stdev 0.10126133 0.72924535 0.24815952 0.17031435
#> Skewness 0.90313679 0.40555349 0.22273611 -0.65071051
#> Kurtosis 0.61746808 -0.49271933 -1.63160327 -0.06477968
#> worstPeriod -1.19569840 -1.19569840 -1.19569840 -1.19569840
#> negativeValues 33.00000000 33.00000000 33.00000000 33.00000000
#> positiveValues 38.00000000 38.00000000 38.00000000 38.00000000
## Compute the Benchmark
endOfPeriodBenchmarks(x, benchmark=4)