seasonal-dummies-cycles.Rd
Generate variables of seasonal dummies and seasonal cycles.
seasonal.dummies(x)
seasonal.cycles(x)
a univariate seasonal time series.
A multivariate time series containing the dummies or cycles by columns.
# In terms of model fitting
# both sets of variables are equivalent
x <- diff(log(AirPassengers))
sd <- seasonal.dummies(x)
fit1 <- lm(x ~ sd[,-1])
summary(fit1)
#>
#> Call:
#> lm(formula = x ~ sd[, -1])
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.097926 -0.021078 -0.001084 0.027432 0.116727
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.02515 0.01165 2.160 0.03261 *
#> sd[, -1]SD2 -0.03714 0.01612 -2.303 0.02283 *
#> sd[, -1]SD3 0.11514 0.01612 7.141 5.73e-11 ***
#> sd[, -1]SD4 -0.04635 0.01612 -2.875 0.00472 **
#> sd[, -1]SD5 -0.01746 0.01612 -1.083 0.28091
#> sd[, -1]SD6 0.10706 0.01612 6.640 7.60e-10 ***
#> sd[, -1]SD7 0.08886 0.01612 5.511 1.82e-07 ***
#> sd[, -1]SD8 -0.02438 0.01612 -1.512 0.13293
#> sd[, -1]SD9 -0.15972 0.01612 -9.906 < 2e-16 ***
#> sd[, -1]SD10 -0.15324 0.01612 -9.504 < 2e-16 ***
#> sd[, -1]SD11 -0.15880 0.01612 -9.849 < 2e-16 ***
#> sd[, -1]SD12 0.09878 0.01612 6.126 9.81e-09 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.03863 on 131 degrees of freedom
#> Multiple R-squared: 0.8788, Adjusted R-squared: 0.8686
#> F-statistic: 86.33 on 11 and 131 DF, p-value: < 2.2e-16
#>
sc <- seasonal.cycles(x)
fit2 <- lm(x ~ sc)
summary(fit1)
#>
#> Call:
#> lm(formula = x ~ sd[, -1])
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.097926 -0.021078 -0.001084 0.027432 0.116727
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.02515 0.01165 2.160 0.03261 *
#> sd[, -1]SD2 -0.03714 0.01612 -2.303 0.02283 *
#> sd[, -1]SD3 0.11514 0.01612 7.141 5.73e-11 ***
#> sd[, -1]SD4 -0.04635 0.01612 -2.875 0.00472 **
#> sd[, -1]SD5 -0.01746 0.01612 -1.083 0.28091
#> sd[, -1]SD6 0.10706 0.01612 6.640 7.60e-10 ***
#> sd[, -1]SD7 0.08886 0.01612 5.511 1.82e-07 ***
#> sd[, -1]SD8 -0.02438 0.01612 -1.512 0.13293
#> sd[, -1]SD9 -0.15972 0.01612 -9.906 < 2e-16 ***
#> sd[, -1]SD10 -0.15324 0.01612 -9.504 < 2e-16 ***
#> sd[, -1]SD11 -0.15880 0.01612 -9.849 < 2e-16 ***
#> sd[, -1]SD12 0.09878 0.01612 6.126 9.81e-09 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.03863 on 131 degrees of freedom
#> Multiple R-squared: 0.8788, Adjusted R-squared: 0.8686
#> F-statistic: 86.33 on 11 and 131 DF, p-value: < 2.2e-16
#>
all.equal(fitted(fit1), fitted(fit2))
#> [1] TRUE