GH Distribution Fit
dist-ghFit.RdEstimates the distrinbutional parameters for a generalized hyperbolic distribution.
Usage
ghFit(x, alpha = 1, beta = 0, delta = 1, mu = 0, lambda = -1/2,
scale = TRUE, doplot = TRUE, span = "auto", trace = TRUE,
title = NULL, description = NULL, ...)Arguments
- x
a numeric vector.
- alpha
first shape parameter.
- beta
second shape parameter, should in the range
(0, alpha).- delta
scale parameter, must be zero or positive.
- mu
location parameter, by default 0.
- lambda
defines the sublclass, by default \(-1/2\).
- scale
a logical flag, by default
TRUE. Should the time series be scaled by its standard deviation to achieve a more stable optimization?- doplot
a logical flag. Should a plot be displayed?
- span
-
x-coordinates for the plot, by default 100 values automatically selected and ranging between the 0.001, and 0.999 quantiles. Alternatively, you can specify the range by an expression like
span=seq(min, max, times = n), where,minandmaxare the left and right endpoints of the range, andngives the number of the intermediate points. - trace
a logical flag. Should the parameter estimation process be traced?
- title
a character string which allows for a project title.
- description
a character string which allows for a brief description.
- ...
parameters to be parsed.
Value
an object from class "fDISTFIT".
Slot fit is a list, currently with components
estimate, minimum and code.
Details
The meanings of the parameters correspond to the first
parameterization, see gh for further details.
The function nlm is used to minimize the "negative"
maximum log-likelihood function. nlm carries out a minimization
using a Newton-type algorithm.
Examples
set.seed(1953)
s <- rgh(n = 1000, alpha = 1.5, beta = 0.3, delta = 0.5, mu = -1.0)
ghFit(s, alpha = 1, beta = 0, delta = 1, mu = mean(s), doplot = TRUE, trace = FALSE)
#>
#> Title:
#> Generalized Hyperbolic Parameter Estimation
#>
#> Call:
#> ghFit(x = s, alpha = 1, beta = 0, delta = 1, mu = mean(s), doplot = TRUE,
#> trace = FALSE)
#>
#> Model:
#> Generalized Hyperbolic Distribution
#>
#> Estimated Parameter(s):
#> alpha beta delta mu lambda
#> 1.7443507 0.3284269 0.5633309 -1.0458067 -0.4132735
#>