GH Distribution Fit
dist-ghFit.Rd
Estimates the distrinbutional parameters for a generalized hyperbolic distribution.
Usage
ghFit(x, alpha = 1, beta = 0, delta = 1, mu = 0, lambda = -1/2,
scale = TRUE, doplot = TRUE, span = "auto", trace = TRUE,
title = NULL, description = NULL, ...)
Arguments
- x
a numeric vector.
- alpha
first shape parameter.
- beta
second shape parameter, should in the range
(0, alpha).
- delta
scale parameter, must be zero or positive.
- mu
location parameter, by default 0.
- lambda
defines the sublclass, by default \(-1/2\).
- scale
a logical flag, by default
TRUE
. Should the time series be scaled by its standard deviation to achieve a more stable optimization?- doplot
a logical flag. Should a plot be displayed?
- span
-
x-coordinates for the plot, by default 100 values automatically selected and ranging between the 0.001, and 0.999 quantiles. Alternatively, you can specify the range by an expression like
span=seq(min, max, times = n)
, where,min
andmax
are the left and right endpoints of the range, andn
gives the number of the intermediate points. - trace
a logical flag. Should the parameter estimation process be traced?
- title
a character string which allows for a project title.
- description
a character string which allows for a brief description.
- ...
parameters to be parsed.
Value
an object from class "fDISTFIT"
.
Slot fit
is a list, currently with components
estimate
, minimum
and code
.
Details
The meanings of the parameters correspond to the first
parameterization, see gh
for further details.
The function nlm
is used to minimize the "negative"
maximum log-likelihood function. nlm
carries out a minimization
using a Newton-type algorithm.
Examples
set.seed(1953)
s <- rgh(n = 1000, alpha = 1.5, beta = 0.3, delta = 0.5, mu = -1.0)
ghFit(s, alpha = 1, beta = 0, delta = 1, mu = mean(s), doplot = TRUE, trace = FALSE)
#>
#> Title:
#> Generalized Hyperbolic Parameter Estimation
#>
#> Call:
#> ghFit(x = s, alpha = 1, beta = 0, delta = 1, mu = mean(s), doplot = TRUE,
#> trace = FALSE)
#>
#> Model:
#> Generalized Hyperbolic Distribution
#>
#> Estimated Parameter(s):
#> alpha beta delta mu lambda
#> 1.7443507 0.3284269 0.5633309 -1.0458067 -0.4132735
#>