Fit a hyperbolic distribution
dist-hypFit.RdEstimates the parameters of a hyperbolic distribution.
Usage
hypFit(x, alpha = 1, beta = 0, delta = 1, mu = 0,
scale = TRUE, doplot = TRUE, span = "auto", trace = TRUE,
title = NULL, description = NULL, ...)Arguments
- x
a numeric vector.
- alpha
-
shape parameter, a positive number.
- beta
-
skewness parameter,
abs(beta)is in the range(0, alpha). - delta
-
scale parameter, must be zero or positive.
- mu
-
location parameter, by default 0.
- scale
-
a logical flag, by default
TRUE. Should the time series be scaled by its standard deviation to achieve a more stable optimization? - doplot
-
a logical flag. Should a plot be displayed?
- span
-
x-coordinates for the plot, by default 100 values automatically selected and ranging between the 0.001, and 0.999 quantiles. Alternatively, you can specify the range by an expression like
span=seq(min, max, times = n), where,minandmaxare the left and right endpoints of the range, andngives the number of the intermediate points. - trace
-
a logical flag. Should the parameter estimation process be traced?
- title
-
a character string which allows for a project title.
- description
-
a character string which allows for a brief description.
- ...
parameters to be parsed.
Details
The meaning of the parameters given above corresponds to the first
parameterization, see dhyp for details.
The function nlm is used to minimize the "negative"
maximum log-likelihood function. nlm carries out a minimization
using a Newton-type algorithm.
Value
an object from class "fDISTFIT".
Slot fit is a list, currently with components
estimate, minimum and code.
Examples
set.seed(1953)
s <- rhyp(n = 1000, alpha = 1.5, beta = 0.3, delta = 0.5, mu = -1.0)
hypFit(s, alpha = 1, beta = 0, delta = 1, mu = mean(s), doplot = TRUE,
trace = FALSE)
#>
#> Title:
#> Hyperbolic Parameter Estimation
#>
#> Call:
#> hypFit(x = s, alpha = 1, beta = 0, delta = 1, mu = mean(s), doplot = TRUE,
#> trace = FALSE)
#>
#> Model:
#> Hyperbolic Distribution
#>
#> Estimated Parameter(s):
#> alpha beta delta mu
#> 1.4203380 0.1913650 0.3637505 -0.9202180
#>