Standardized GH distribution fit
dist-sghFit.Rd
Estimates the distributional parameters for a standardized generalized hyperbolic distribution.
Usage
sghFit(x, zeta = 1, rho = 0, lambda = 1, include.lambda = TRUE,
scale = TRUE, doplot = TRUE, span = "auto", trace = TRUE,
title = NULL, description = NULL, ...)
Arguments
- x
a numeric vector.
- zeta, rho, lambda
shape parameter
zeta
is positive, skewness parameterrho
is in the range (-1, 1). and index parameterlambda
, by default 1.- include.lambda
a logical flag, by default
TRUE
. Should the index parameterlambda
included in the parameter estimate?- scale
a logical flag, by default
TRUE
. Should the time series be scaled by its standard deviation to achieve a more stable optimization?- doplot
a logical flag. Should a plot be displayed?
- span
x-coordinates for the plot, by default 100 values automatically selected and ranging between the 0.001, and 0.999 quantiles. Alternatively, you can specify the range by an expression like
span=seq(min, max, times = n)
, where,min
andmax
are the left and right endpoints of the range, andn
gives the number of the intermediate points.- trace
a logical flag. Should the parameter estimation process be traced?
- title
a character string which allows for a project title.
- description
a character string which allows for a brief description.
- ...
parameters to be parsed.
Value
an object from class "fDISTFIT"
.
Slot fit
is a list, currently with components
estimate
, minimum
, code
,
param
,
mean
(mean of the original data), var
(variance of
original data).
Examples
set.seed(1953)
s <- rsgh(n = 2000, zeta = 0.7, rho = 0.5, lambda = 0)
sghFit(s, zeta = 1, rho = 0, lambda = 1, include.lambda = TRUE,
doplot = TRUE, trace = FALSE)
#>
#> Title:
#> SGH Parameter Estimation
#>
#> Call:
#> sghFit(x = s, zeta = 1, rho = 0, lambda = 1, include.lambda = TRUE,
#> doplot = TRUE, trace = FALSE)
#>
#> Model:
#> Standarized GH Distribution
#>
#> Estimated Parameter(s):
#> zeta rho lambda
#> 0.6700175 0.5262540 -0.1766919
#>