Fit of a Standardized NIG Distribution
dist-snigFit.Rd
Estimates the parameters of a standardized normal inverse Gaussian distribution.
Usage
snigFit(x, zeta = 1, rho = 0, scale = TRUE, doplot = TRUE,
span = "auto", trace = TRUE, title = NULL, description = NULL, ...)
Arguments
- zeta, rho
shape parameter
zeta
is positive, skewness parameterrho
is in the range (-1, 1).- description
a character string which allows for a brief description.
- doplot
a logical flag. Should a plot be displayed?
- scale
a logical flag, by default
TRUE
. Should the time series be scaled by its standard deviation to achieve a more stable optimization?- span
x-coordinates for the plot, by default 100 values automatically selected and ranging between the 0.001, and 0.999 quantiles. Alternatively, you can specify the range by an expression like
span=seq(min, max, times = n)
, where,min
andmax
are the left and right endpoints of the range, andn
gives the number of the intermediate points.- title
a character string which allows for a project title.
- trace
a logical flag. Should the parameter estimation process be traced?
- x
a numeric vector.
- ...
parameters to be parsed.
Value
an object from class "fDISTFIT"
.
Slot fit
is a list with the same components as the result from
snigFit
.
Examples
## Simulate Random Variates:
set.seed(1953)
s <- rsnig(n = 2000, zeta = 0.7, rho = 0.5)
## snigFit -
# Fit Parameters:
snigFit(s, zeta = 1, rho = 0, doplot = TRUE)
#>
#> Objective Function Value: -2637.572
#> Parameter Estimates: 1 0
#>
#> Objective Function Value: -2637.572
#> Parameter Estimates: 1 0
#>
#> Objective Function Value: -2637.572
#> Parameter Estimates: 1 1.490116e-08
#>
#> Objective Function Value: -28782.33
#> Parameter Estimates: 0.919416 0.9967478
#>
#> Objective Function Value: -2606.898
#> Parameter Estimates: 0.9919416 0.09967478
#>
#> Objective Function Value: -2606.899
#> Parameter Estimates: 0.9919897 0.09967478
#>
#> Objective Function Value: -2606.911
#> Parameter Estimates: 0.9919416 0.09962666
#>
#> Objective Function Value: -2562.092
#> Parameter Estimates: 0.9704989 0.298522
#>
#> Objective Function Value: -2550.865
#> Parameter Estimates: 0.8431218 0.5874547
#>
#> Objective Function Value: -2550.865
#> Parameter Estimates: 0.8431528 0.5874547
#>
#> Objective Function Value: -2550.865
#> Parameter Estimates: 0.8431218 0.5874527
#>
#> Objective Function Value: -2563.069
#> Parameter Estimates: 0.3791223 0.3758393
#>
#> Objective Function Value: -2546.375
#> Parameter Estimates: 0.8371896 0.3893593
#>
#> Objective Function Value: -2546.375
#> Parameter Estimates: 0.8372148 0.3893593
#>
#> Objective Function Value: -2546.375
#> Parameter Estimates: 0.8371896 0.3893608
#>
#> Objective Function Value: -2540.91
#> Parameter Estimates: 0.6467078 0.4440735
#>
#> Objective Function Value: -2540.91
#> Parameter Estimates: 0.6467264 0.4440735
#>
#> Objective Function Value: -2540.91
#> Parameter Estimates: 0.6467078 0.4440722
#>
#> Objective Function Value: -2549.238
#> Parameter Estimates: 0.7913513 0.5795549
#>
#> Objective Function Value: -2540.581
#> Parameter Estimates: 0.6574147 0.4800493
#>
#> Objective Function Value: -2540.581
#> Parameter Estimates: 0.65741 0.4800493
#>
#> Objective Function Value: -2540.581
#> Parameter Estimates: 0.6574147 0.4800471
#>
#> Objective Function Value: -2540.35
#> Parameter Estimates: 0.6917205 0.4648174
#>
#> Objective Function Value: -2540.35
#> Parameter Estimates: 0.6917027 0.4648174
#>
#> Objective Function Value: -2540.35
#> Parameter Estimates: 0.6917205 0.4648187
#>
#> Objective Function Value: -2540.447
#> Parameter Estimates: 0.7256555 0.4808584
#>
#> Objective Function Value: -2540.336
#> Parameter Estimates: 0.6964065 0.4743132
#>
#> Objective Function Value: -2540.336
#> Parameter Estimates: 0.6964023 0.4743132
#>
#> Objective Function Value: -2540.336
#> Parameter Estimates: 0.6964065 0.4743115
#>
#> Objective Function Value: -2540.336
#> Parameter Estimates: 0.7054868 0.4706739
#>
#> Objective Function Value: -2540.336
#> Parameter Estimates: 0.7054778 0.4706739
#>
#> Objective Function Value: -2540.336
#> Parameter Estimates: 0.7054868 0.4706753
#>
#> Objective Function Value: -2540.33
#> Parameter Estimates: 0.7006596 0.4714624
#>
#> Objective Function Value: -2540.33
#> Parameter Estimates: 0.7006637 0.4714624
#>
#> Objective Function Value: -2540.33
#> Parameter Estimates: 0.7006596 0.4714609
#>
#> Objective Function Value: -2540.331
#> Parameter Estimates: 0.6965967 0.468739
#>
#> Objective Function Value: -2540.329
#> Parameter Estimates: 0.6988812 0.4702703
#>
#> Objective Function Value: -2540.329
#> Parameter Estimates: 0.6988849 0.4702703
#>
#> Objective Function Value: -2540.329
#> Parameter Estimates: 0.6988812 0.4702714
#>
#> Objective Function Value: -2540.329
#> Parameter Estimates: 0.6988812 0.4702693
#>
#> Objective Function Value: -2540.328
#> Parameter Estimates: 0.6967674 0.4706101
#>
#> Objective Function Value: -2540.328
#> Parameter Estimates: 0.6967709 0.4706101
#>
#> Objective Function Value: -2540.328
#> Parameter Estimates: 0.6967674 0.4706107
#>
#> Objective Function Value: -2540.328
#> Parameter Estimates: 0.6967674 0.4706094
#>
#> Objective Function Value: -2540.328
#> Parameter Estimates: 0.6961356 0.4707189
#>
#> Objective Function Value: -2540.328
#> Parameter Estimates: 0.6961399 0.4707189
#>
#> Objective Function Value: -2540.328
#> Parameter Estimates: 0.6961314 0.4707189
#>
#> Objective Function Value: -2540.328
#> Parameter Estimates: 0.6961356 0.4707217
#>
#> Objective Function Value: -2540.328
#> Parameter Estimates: 0.6961356 0.4707162
#>
#> Objective Function Value: -2540.328
#> Parameter Estimates: 0.6961428 0.470719
#>
#> Objective Function Value: -2540.328
#> Parameter Estimates: 0.6962123 0.470719
#>
#> Objective Function Value: -2540.328
#> Parameter Estimates: 0.6960733 0.470719
#>
#> Objective Function Value: -2540.328
#> Parameter Estimates: 0.6961428 0.4707481
#>
#> Objective Function Value: -2540.328
#> Parameter Estimates: 0.6961428 0.47069
#>
#> Objective Function Value: -2540.328
#> Parameter Estimates: 0.6961428 0.470719
#>
#> Standardized Parameters:
#> zeta rho fix.lambda
#> 0.6961428 0.4707190 -0.5000000
#>
#> 1st Parameterization:
#> alpha beta delta mu
#> 1.0718480 0.5045392 0.7361345 -0.3927452
#>
#> Title:
#> SNIG Parameter Estimation
#>
#> Call:
#> snigFit(x = s, zeta = 1, rho = 0, doplot = TRUE)
#>
#> Model:
#> Standarized NIG Distribution
#>
#> Estimated Parameter(s):
#> zeta rho fix.lambda
#> 0.6961428 0.4707190 -0.5000000
#>