MixVAR models with multivariate Gaussian noise components
MixVARGaussian-class.Rd
Class MixVARGaussian represents MixAR models with multivariate Gaussian noise components.
Objects from the Class
Objects can be created by calls of the form
new("MixVARGaussian", ...)
, giving the elements of the model as
named arguments, see the examples below.
arcoef
contains the AR coefficients, one numeric array for
each mixture component. It can be given as a
"raggedCoefV"
object or as a list of numeric
arrays.
The AR order of the model is inferred from arcoef
argument. If argument order
is given, it is checked for
consistency with arcoef
. The shift
slot defaults to a
matrix of zeroes and the vcov
slot to an array of
identity matrices, one for each component.
The distribution of the noise components is standard multivariate Gaussian, N(0,1).
Slots
All slots except arcoef
are numeric vectors of length
equal to the number of components in the model.
prob
:probabilities of the mixture components,
order
:AR orders of the components,
shift
:the shift (intercept) terms of the AR components,
vcov
:covariance matrices of the noise terms of the AR components,
arcoef
:The AR components, object of class
"raggedCoefV"
.
Extends
Class "MixAR"
, directly.
See also
class "MixAR"
Examples
showClass("MixVARGaussian")
#> Class "MixVARGaussian" [package "mixAR"]
#>
#> Slots:
#>
#> Name: prob order shift vcov arcoef
#> Class: numeric numeric matrix array raggedCoefV
#>
#> Extends: "MixVAR"
## Create array of covariance matrices
Sigma1 <- cbind(c(0.0013, 0.0011), c(0.0011, 0.0012))
Sigma2 <- cbind(c(0.0072, 0.0047), c(0.0047, 0.0039))
Sigma <- array(c(Sigma1, Sigma2), dim=c(2,2,2))
## Create list of AR coefficients
AR <- list()
AR[[1]] <- array(c(0.0973, -0.0499, 0.2927, 0.4256, ## VAR(2;4)
-0.0429, 0.0229, -0.1515, -0.1795,
-0.0837, -0.1060, -0.1530, 0.1947,
-0.1690, -0.0903, 0.1959, 0.0955), dim=c(2,2,4))
AR[[2]] <- array(c(0.3243, 0.2648, 0.4956, 0.2870, ## VAR(2;3)
-0.1488, 0.0454, -0.0593, -0.3629,
0.1314, 0.0274, 0.0637, 0.0485), dim=c(2,2,3))
## Create vector of mixing weights
prob <- c(0.6376, 0.3624)
## Create matrix of shift parameters
shift <- cbind(c(0.0044, 0.0020), c(-0.0039, -0.0014))
## Build "MixVARGaussian" model
new("MixVARGaussian", prob=prob, vcov=Sigma, arcoef=AR, shift=shift)
#> (To see the internal structure of the object, use function 'str'.)
#>
#> An object of class "MixVARGaussian"
#> Number of components: 2
#> Number of series: 2
#> prob shift order ar_1 ar_2 ar_3
#> Comp_1 0.6376 0.0044 4 0.0973 0.2927 -0.0429 -0.1515 -0.0837 -0.1530
#> 0.0020 -0.0499 0.4256 0.0229 -0.1795 -0.1060 0.1947
#> Comp_2 0.3624 -0.0039 3 0.3243 0.4956 -0.1488 -0.0593 0.1314 0.0637
#> -0.0014 0.2648 0.2870 0.0454 -0.3629 0.0274 0.0485
#> ar_4 vcov
#> Comp_1 -0.1690 0.1959 0.0013 0.0011
#> -0.0903 0.0955 0.0011 0.0012
#> Comp_2 0.0072 0.0047
#> 0.0047 0.0039
#>
#> Distributions of the error components:
#> Multivariate standard Gaussian
#>