Package index
-
mixAR-package
- Mixture Autoregressive Models
EM and Bayesian estimation of mixture autoregressive models
Fit mixture autoregressive models using the EM algorithm or MCMC.
-
fit_mixAR()
- Fit mixture autoregressive models
-
bayes_mixAR()
- Bayesian sampling of mixture autoregressive models
-
fit_mixARreg()
mixARreg()
- Fit time series regression models with mixture autoregressive residuals
-
mixSARfit()
- Fit mixture autoregressive models with seasonal AR parameters
-
tsdiag(<MixAR>)
mixAR_diag()
- Diagnostic checks for mixture autoregressive models
-
mix_se()
- Compute standard errors of estimates of MixAR models
-
mixAR_BIC()
BIC_comp()
- BIC based model selection for MixAR models
-
mix_pdf
mix_pdf-methods
mix_pdf,MixARGaussian,missing,missing,numeric-method
mix_pdf,MixARGaussian,numeric,missing,numeric-method
mix_pdf,MixARGaussian,numeric,numeric,missing-method
mix_pdf,MixARgen,missing,missing,numeric-method
mix_pdf,MixARgen,numeric,missing,numeric-method
mix_pdf,MixARgen,numeric,numeric,missing-method
mix_cdf
mix_cdf-methods
mix_cdf,MixARGaussian,missing,missing,numeric-method
mix_cdf,MixARGaussian,numeric,missing,numeric-method
mix_cdf,MixARGaussian,numeric,numeric,missing-method
mix_cdf,MixARgen,missing,missing,numeric-method
mix_cdf,MixARgen,numeric,missing,numeric-method
mix_cdf,MixARgen,numeric,numeric,missing-method
- Conditional pdf's and cdf's of MixAR models
-
mix_qf()
- Conditional quantile functions of MixAR models
-
mix_location()
mix_variance()
mix_central_moment()
mix_moment()
mix_kurtosis()
mix_ekurtosis()
- Conditional moments of MixAR models
-
multiStep_dist()
- Multi-step predictions for MixAR models
-
mixARnoise_sim()
- Simulate white noise series from a list of functions and vector of regimes
-
mixAR_sim()
mixAny_sim()
- Simulate from MixAR models
-
MixARGaussian-class
MixARGaussian
- mixAR models with Gaussian noise components
-
MixARgen-class
mixARgen
- Class
"MixARgen"
-
MixAR-class
- Class
"MixAR"
— mixture autoregressive models
-
mixAR()
- Create MixAR objects
-
exampleModels
- MixAR models for examples and testing
-
show_diff()
- Show differences between two models
-
make_fcond_lik()
- Create a function for computation of conditional likelihood
-
get_edist-methods
get_edist,MixAR-method
get_edist,MixARGaussian-method
get_edist,MixARgen-method
- Methods for function
get_edist
in package mixAR
-
mix_ncomp()
- Number of rows or columns of a MixComp object
-
row_lengths-methods
row_lengths
row_lengths,ANY-method
row_lengths,MixAR-method
row_lengths,raggedCoef-method
- Methods for function
row_lengths
in package mixAR
-
mixVAR_sim()
- Simulate from multivariate MixAR models
-
mixVARfit()
- Fit mixture vector autoregressive models
-
MixVAR-class
- Class
"MixVAR"
— mixture vector autoregressive models
-
MixVARGaussian-class
MixVARGaussian
- MixVAR models with multivariate Gaussian noise components
-
fit_mixVAR()
- Fit mixture vector autoregressive models
-
raggedCoefV-class
raggedCoefV
[,raggedCoefV,numeric,ANY-method
[,raggedCoefV,numeric,ANY,ANY-method
[,raggedCoefV,numeric,missing,ANY-method
[,raggedCoefV,missing,numeric,ANY-method
[,raggedCoefV,numeric,numeric,ANY-method
[[,raggedCoefV,missing,ANY-method
[[,raggedCoefV,numeric,ANY-method
[,raggedCoefV,missing,ANY,ANY-method
- Class
"raggedCoefV"
— ragged list
-
Choose_pk()
- Choose the autoregressive order of MixAR components
-
sampZpi()
sampMuShift()
sampSigmaTau()
- Sampling functions for Bayesian analysis of mixture autoregressive models
-
bx_dx()
- RJMCMC move for AR order selection of mixture autoregressive models
-
label_switch()
- A posteriori relabelling of a Markov chain
-
dist_norm
- Functions for the standard normal distribution
-
fdist_stdnorm()
fdist_stdt()
fn_stdt()
b_show()
distlist()
ed_nparam
ed_parse()
ed_skeleton()
ed_src
ed_stdnorm
ed_stdt
ed_stdt0
ed_stdt1
ft_stdt
- Generator functions for noise distributions
-
get_edist()
noise_dist()
noise_rand()
noise_params()
set_noise_params()
- Internal mixAR functions
-
stdnormmoment()
stdnormabsmoment()
stdtmoment()
stdtabsmoment()
tabsmoment()
- Compute moments and absolute moments of standardised-t and normal distributions
-
parameters()
`parameters<-`()
- Set or extract the parameters of MixAR objects
-
isStable()
- Check if a MixAR model is stable
-
lik_params()
- Vector of parameters of a MixAR model
-
lik_params_bounds()
- Give natural limits for parameters of a MixAR model.
-
mixAR_switch()
mixAR_permute()
- Relabel the components of a MixAR model
-
predict_coef()
- Exact predictive parameters for multi-step MixAR prediction
-
tomarparambyComp()
tomarparambyType()
permuteArpar()
- Translations of my old MixAR Mathematica functions
-
inner()
- Generalised inner product and methods for class
"MixComp"
-
`%of%`
- Infix operator to apply functions to matrix-like objects
Computations with noise distributions of mixAR models
Computations involving noise distributions of mixAR models.
-
noise_dist-methods
noise_dist,MixAR-method
noise_dist,MixARGaussian-method
noise_dist,MixARgen-method
- Methods for function
noise_dist
in package mixAR
-
noise_moment()
- Compute moments of the noise components
-
noise_params-methods
noise_params,MixAR-method
noise_params,MixARgen-method
- Methods for function
noise_params
in package mixAR
-
noise_rand-methods
noise_rand,MixAR-method
noise_rand,MixARGaussian-method
noise_rand,MixARgen-method
- Methods for function
noise_rand
in package mixAR
-
MixComp-class
dim,MixComp-method
-,MixComp,missing-method
-,MixComp,numeric-method
-,numeric,MixComp-method
*,character,MixComp-method
*,function,MixComp-method
*,MixComp,MixComp-method
*,MixComp,numeric-method
*,numeric,MixComp-method
/,MixComp,numeric-method
/,numeric,MixComp-method
+,MixComp,numeric-method
+,numeric,MixComp-method
^,MixComp,numeric-method
- Class
"MixComp"
— manipulation of MixAR time series
-
mix_ek()
- Function and methods to compute component residuals for MixAR models
-
mix_hatk()
- Compute component predictions for MixAR models
-
raghat1()
- Filter a time series with options to shift and scale
-
em_est_dist()
- Optimise scale parameters in MixARgen models
-
tauetk2sigmahat()
em_est_sigma()
- Update the scale parameters of MixAR models
-
em_rinit()
etk2tau()
- Gaussian EM-step with random initialisation
-
em_tau()
em_tau_safe()
- Compute probabilities for the observations to belong to each of the components
-
est_templ()
- Create estimation templates from MixAR model objects
-
cond_loglik()
cond_loglikS()
- Log-likelihood of MixAR models
-
marg_loglik()
- Calculate marginal loglikelihood at high density points of a MAR model.
-
mixAR_cond_probs()
- The E-step of the EM algorithm for MixAR models
-
mixARemFixedPoint()
mixARgenemFixedPoint()
- EM estimation for mixture autoregressive models
-
mixgenMstep()
- M-step for models from class MixARgen
-
tauCorrelate()
tau2arcoef()
mixMstep()
- Internal functions for estimation of MixAR models with Gaussian components
-
mixFilter()
- Filter time series with MixAR filters
-
mixSubsolve()
- Support for EM estimation of MixAR models, internal function.
-
randomArCoefficients()
randomMarParametersKernel()
randomMarResiduals()
tsDesignMatrixExtended()
- Random initial values for MixAR estimation
-
tau2probhat()
- Estimate probabilities of a MixAR model from tau.
-
raggedCoef()
- Class
"raggedCoef"
— ragged list objects
-
raggedCoefS-class
raggedCoefS
[,raggedCoefS,missing,missing,ANY-method
[,raggedCoefS,numeric,missing,ANY-method
[,raggedCoefS,missing,numeric,ANY-method
[,raggedCoefS,numeric,numeric,ANY-method
[[,raggedCoefS,ANY,missing-method
[[,raggedCoefS,ANY,ANY-method
[[
[[
- Class
"raggedCoefS"
— ragged list
-
rag_modify()
ragged2vec()
- Small utilities for ragged objects
-
ragged2char()
- Convert a ragged list into a matrix of characters
-
PortfolioData1
- Closing prices of four stocks
-
mix_location-methods
mix_location,MixAR,missing,missing,missing-method
mix_location,MixAR,missing,missing,numeric-method
mix_location,MixAR,numeric,missing,missing-method
mix_location,MixAR,numeric,numeric,missing-method
- Conditional mean of MixAR models
-
mix_moment-methods
mix_moment,MixAR,missing,missing,numeric-method
- Methods for mix_moment
-
mix_central_moment-methods
mix_central_moment,MixAR,missing,missing,numeric-method
- Methods for mix_central_moment
-
simuExperiment()
- Perform simulation experiments
-
adjustLengths()
- Adjust the length of the second argument to be the same as that of the first one
-
.canonic_coef()
- Put core MixAR coefficients into a canonical form, internal function
-
companion_matrix()
- Create a companion matrix from a vector
-
err_k()
- Utility function for MixAR
-
err()
- Calculate component specific error terms under MixAR model
-
initialize-methods
initialize,MixAR-method
initialize,raggedCoef-method
initialize,raggedCoefS-method
initialize,MixARgen-method
initialize,raggedCoefV-method
initialize,MixVAR-method
- Methods for function
initialize
in package mixAR
-
lastn()
- Extract the last n elements of a vector
-
permn_cols()
- All permutations of the columns of a matrix
-
ui()
- Utility function for mixAR