Package index
-
mixAR-package - Mixture Autoregressive Models
EM and Bayesian estimation of mixture autoregressive models
Fit mixture autoregressive models using the EM algorithm or MCMC.
-
fit_mixAR() - Fit mixture autoregressive models
-
bayes_mixAR() - Bayesian sampling of mixture autoregressive models
-
fit_mixARreg()mixARreg() - Fit time series regression models with mixture autoregressive residuals
-
mixSARfit() - Fit mixture autoregressive models with seasonal AR parameters
-
tsdiag(<MixAR>)mixAR_diag() - Diagnostic checks for mixture autoregressive models
-
mix_se() - Compute standard errors of estimates of MixAR models
-
mixAR_BIC()BIC_comp() - BIC based model selection for MixAR models
-
mix_pdfmix_pdf-methodsmix_pdf,MixARGaussian,missing,missing,numeric-methodmix_pdf,MixARGaussian,numeric,missing,numeric-methodmix_pdf,MixARGaussian,numeric,numeric,missing-methodmix_pdf,MixARgen,missing,missing,numeric-methodmix_pdf,MixARgen,numeric,missing,numeric-methodmix_pdf,MixARgen,numeric,numeric,missing-methodmix_cdfmix_cdf-methodsmix_cdf,MixARGaussian,missing,missing,numeric-methodmix_cdf,MixARGaussian,numeric,missing,numeric-methodmix_cdf,MixARGaussian,numeric,numeric,missing-methodmix_cdf,MixARgen,missing,missing,numeric-methodmix_cdf,MixARgen,numeric,missing,numeric-methodmix_cdf,MixARgen,numeric,numeric,missing-method - Conditional pdf's and cdf's of MixAR models
-
mix_qf() - Conditional quantile functions of MixAR models
-
mix_location()mix_variance()mix_central_moment()mix_moment()mix_kurtosis()mix_ekurtosis() - Conditional moments of MixAR models
-
multiStep_dist() - Multi-step predictions for MixAR models
-
mixARnoise_sim() - Simulate white noise series from a list of functions and vector of regimes
-
mixAR_sim()mixAny_sim() - Simulate from MixAR models
-
MixARGaussian-classMixARGaussian - mixAR models with Gaussian noise components
-
MixARgen-classmixARgen - Class
"MixARgen"
-
MixAR-class - Class
"MixAR"— mixture autoregressive models
-
mixAR() - Create MixAR objects
-
exampleModels - MixAR models for examples and testing
-
show_diff() - Show differences between two models
-
make_fcond_lik() - Create a function for computation of conditional likelihood
-
get_edist-methodsget_edist,MixAR-methodget_edist,MixARGaussian-methodget_edist,MixARgen-method - Methods for function
get_edistin package mixAR
-
mix_ncomp() - Number of rows or columns of a MixComp object
-
row_lengths-methodsrow_lengthsrow_lengths,ANY-methodrow_lengths,MixAR-methodrow_lengths,raggedCoef-method - Methods for function
row_lengthsin package mixAR
-
mixVAR_sim() - Simulate from multivariate MixAR models
-
mixVARfit() - Fit mixture vector autoregressive models
-
MixVAR-class - Class
"MixVAR"— mixture vector autoregressive models
-
MixVARGaussian-classMixVARGaussian - MixVAR models with multivariate Gaussian noise components
-
fit_mixVAR() - Fit mixture vector autoregressive models
-
raggedCoefV-classraggedCoefV[,raggedCoefV,numeric,ANY-method[,raggedCoefV,numeric,ANY,ANY-method[,raggedCoefV,numeric,missing,ANY-method[,raggedCoefV,missing,numeric,ANY-method[,raggedCoefV,numeric,numeric,ANY-method[[,raggedCoefV,missing,ANY-method[[,raggedCoefV,numeric,ANY-method[,raggedCoefV,missing,ANY,ANY-method - Class
"raggedCoefV"— ragged list
-
Choose_pk() - Choose the autoregressive order of MixAR components
-
sampZpi()sampMuShift()sampSigmaTau() - Sampling functions for Bayesian analysis of mixture autoregressive models
-
bx_dx() - RJMCMC move for AR order selection of mixture autoregressive models
-
label_switch() - A posteriori relabelling of a Markov chain
-
dist_norm - Functions for the standard normal distribution
-
fdist_stdnorm()fdist_stdt()fn_stdt()b_show()distlist()ed_nparamed_parse()ed_skeleton()ed_srced_stdnormed_stdted_stdt0ed_stdt1ft_stdt - Generator functions for noise distributions
-
get_edist()noise_dist()noise_rand()noise_params()set_noise_params() - Internal mixAR functions
-
stdnormmoment()stdnormabsmoment()stdtmoment()stdtabsmoment()tabsmoment() - Compute moments and absolute moments of standardised-t and normal distributions
-
parameters()`parameters<-`() - Set or extract the parameters of MixAR objects
-
isStable() - Check if a MixAR model is stable
-
lik_params() - Vector of parameters of a MixAR model
-
lik_params_bounds() - Give natural limits for parameters of a MixAR model.
-
mixAR_switch()mixAR_permute() - Relabel the components of a MixAR model
-
predict_coef() - Exact predictive parameters for multi-step MixAR prediction
-
tomarparambyComp()tomarparambyType()permuteArpar() - Translations of my old MixAR Mathematica functions
-
inner() - Generalised inner product and methods for class
"MixComp"
-
`%of%` - Infix operator to apply functions to matrix-like objects
Computations with noise distributions of mixAR models
Computations involving noise distributions of mixAR models.
-
noise_dist-methodsnoise_dist,MixAR-methodnoise_dist,MixARGaussian-methodnoise_dist,MixARgen-method - Methods for function
noise_distin package mixAR
-
noise_moment() - Compute moments of the noise components
-
noise_params-methodsnoise_params,MixAR-methodnoise_params,MixARgen-method - Methods for function
noise_paramsin package mixAR
-
noise_rand-methodsnoise_rand,MixAR-methodnoise_rand,MixARGaussian-methodnoise_rand,MixARgen-method - Methods for function
noise_randin package mixAR
-
MixComp-classdim,MixComp-method-,MixComp,missing-method-,MixComp,numeric-method-,numeric,MixComp-method*,character,MixComp-method*,function,MixComp-method*,MixComp,MixComp-method*,MixComp,numeric-method*,numeric,MixComp-method/,MixComp,numeric-method/,numeric,MixComp-method+,MixComp,numeric-method+,numeric,MixComp-method^,MixComp,numeric-method - Class
"MixComp"— manipulation of MixAR time series
-
mix_ek() - Function and methods to compute component residuals for MixAR models
-
mix_hatk() - Compute component predictions for MixAR models
-
raghat1() - Filter a time series with options to shift and scale
-
em_est_dist() - Optimise scale parameters in MixARgen models
-
tauetk2sigmahat()em_est_sigma() - Update the scale parameters of MixAR models
-
em_rinit()etk2tau() - Gaussian EM-step with random initialisation
-
em_tau()em_tau_safe() - Compute probabilities for the observations to belong to each of the components
-
est_templ() - Create estimation templates from MixAR model objects
-
cond_loglik()cond_loglikS() - Log-likelihood of MixAR models
-
marg_loglik() - Calculate marginal loglikelihood at high density points of a MAR model.
-
mixAR_cond_probs() - The E-step of the EM algorithm for MixAR models
-
mixARemFixedPoint()mixARgenemFixedPoint() - EM estimation for mixture autoregressive models
-
mixgenMstep() - M-step for models from class MixARgen
-
tauCorrelate()tau2arcoef()mixMstep() - Internal functions for estimation of MixAR models with Gaussian components
-
mixFilter() - Filter time series with MixAR filters
-
mixSubsolve() - Support for EM estimation of MixAR models, internal function.
-
randomArCoefficients()randomMarParametersKernel()randomMarResiduals()tsDesignMatrixExtended() - Random initial values for MixAR estimation
-
tau2probhat() - Estimate probabilities of a MixAR model from tau.
-
raggedCoef() - Class
"raggedCoef"— ragged list objects
-
raggedCoefS-classraggedCoefS[,raggedCoefS,missing,missing,ANY-method[,raggedCoefS,numeric,missing,ANY-method[,raggedCoefS,missing,numeric,ANY-method[,raggedCoefS,numeric,numeric,ANY-method[[,raggedCoefS,ANY,missing-method[[,raggedCoefS,ANY,ANY-method[[[[ - Class
"raggedCoefS"— ragged list
-
rag_modify()ragged2vec() - Small utilities for ragged objects
-
ragged2char() - Convert a ragged list into a matrix of characters
-
PortfolioData1 - Closing prices of four stocks
-
mix_location-methodsmix_location,MixAR,missing,missing,missing-methodmix_location,MixAR,missing,missing,numeric-methodmix_location,MixAR,numeric,missing,missing-methodmix_location,MixAR,numeric,numeric,missing-method - Conditional mean of MixAR models
-
mix_moment-methodsmix_moment,MixAR,missing,missing,numeric-method - Methods for mix_moment
-
mix_central_moment-methodsmix_central_moment,MixAR,missing,missing,numeric-method - Methods for mix_central_moment
-
simuExperiment() - Perform simulation experiments
-
adjustLengths() - Adjust the length of the second argument to be the same as that of the first one
-
.canonic_coef() - Put core MixAR coefficients into a canonical form, internal function
-
companion_matrix() - Create a companion matrix from a vector
-
err_k() - Utility function for MixAR
-
err() - Calculate component specific error terms under MixAR model
-
initialize-methodsinitialize,MixAR-methodinitialize,raggedCoef-methodinitialize,raggedCoefS-methodinitialize,MixARgen-methodinitialize,raggedCoefV-methodinitialize,MixVAR-method - Methods for function
initializein package mixAR
-
lastn() - Extract the last n elements of a vector
-
permn_cols() - All permutations of the columns of a matrix
-
ui() - Utility function for mixAR