Choose the autoregressive order of MixAR components
Choose_pk.RdReversible Jump MCMC algorithm to choose the optimal autoregressive order of each component of a mixture autoregressive model.
Arguments
- y
a time series. Currently a
numericvector.- model
an object inheriting from class
"MixAR".- fix_shift
whether the shift/mean parameter should be kept fixed to its starting value or not. Default is
FALSE.- tau
tuning parameters for Metropolis-Hastings algorithm in sampling AR coefficients.
- pmax
the largest autoregressive order allowed for each component.
- method
character vector of length 1. Method for calculating probability of new AR order to be increased/decreased by 1 unit. Currently available
"Ratio","Poisson"and"NULL". Default is"NULL".- par
numeric, parameter for tuning probabilities according tomethod. Ignored ifmethodis "NULL".- nsim
numeric, the number of iterations.
Value
- out
a dataframe with
g+1columns. The firstgcolumns contain the autoregressive orders of the components, the last column how often a model is preferred, divided bynsim.- fix_shift
the choice made for the shift/mean parameters.
- method
the method used to increase/decrease AR orders.
See also
bx_dx for more details on the method
Examples
model <- new("MixARGaussian",
prob = exampleModels$WL_At@prob, # c(0.5, 0.5)
scale = exampleModels$WL_At@scale, # c(1, 2)
arcoef = list(-0.5, 1) )
# note: arcoef != list(-0.5, 1.1) == exampleModels$WL_At@arcoef@a
set.seed(1234)
n <- 50 # 200
y <- mixAR_sim(model, n, rep(0, max(model@order)), nskip = 100)
nsim <- 25 # 100
pk_star <- Choose_pk(y, model, tau = c(.15, .25), pmax = 5, method = "NULL", nsim = nsim)