Compute standard errors of estimates of MixAR models
mix_se-methods.Rd
Compute standard errors of estimates of MixAR models.
Value
a list with components:
- standard_errors
Standard error of parameter estimates,
- covariance_matrix
The covariance matrix, obtained as inverse of the information matrix,
- Complete_Information
Complete information matrix,
- Missing_Information
Missing information matrix.
Methods
signature(x = "ANY", model = "list")
signature(x = "ANY", model = "MixAR")
signature(x = "ANY", model = "MixARGaussian")
Examples
## Example with IBM data
## data(ibmclose, package = "fma")
moWLprob <- exampleModels$WL_ibm@prob # 2019-12-15; was: c(0.5339,0.4176,0.0385)
moWLsigma <- exampleModels$WL_ibm@scale # c(4.8227,6.0082,18.1716)
moWLar <- list(-0.3208, 0.6711,0) # @Davide - is this from some model?
moWLibm <- new("MixARGaussian", prob = moWLprob, scale = moWLsigma, arcoef = moWLar)
IBM <- diff(fma::ibmclose)
mix_se(as.numeric(IBM), moWLibm, fix_shift = TRUE)$'standard_errors'
#> $Component_1
#> Estimate Standard Error
#> prob 0.5439 0.09005847
#> AR_1 -0.3208 0.07477196
#> scale 4.8227 0.49799538
#>
#> $Component_2
#> Estimate Standard Error
#> prob 0.4176 0.08671523
#> AR_1 0.6711 0.12662929
#> scale 6.0082 0.77726571
#>
#> $Component_3
#> Estimate Standard Error
#> prob 0.0385 0.03263437
#> AR_1 0.0000 0.80123158
#> scale 18.1716 5.70693125
#>