Fit mixture autoregressive models with seasonal AR parameters
mixSARfit.Rd
Provides estimation via EM-Algorithm for mixture autoregressive models including seasonal AR parameters.
Details
This function only works for "MixAR"
objects in which slot
arcoef
is of class "raggedCoefS"
.
Value
A list of 2:
- model
an object of class
"MixAR"
. The estimated model.- vallogf
the value of the loglikelihood function for the returned model.
Examples
ar1 <- list(c(0.5, -0.5), c(1.1, 0, -0.5))
ar12 <- list(0, c(-0.3, 0.1))
s = 12
rag <- new("raggedCoefS", a = ar1, as = ar12, s = s)
model <- new("MixARGaussian", prob = exampleModels$WL_A@prob, # c(0.5, 0.5)
scale = exampleModels$WL_A@scale, # c(5, 1)
arcoef = rag)
set.seed(1234)
y <- mixAR_sim(model, n = 100, init = rep(0, 24))
mixSARfit(y, model)
#> $model
#> An object of class "MixARGaussian"
#> Number of components: 2
#> prob shift scale order ar_1 ar_2 ar_3
#> Comp_1 0.5690198 0.4332104 4.315505 2 0.4074179 -0.43966159
#> Comp_2 0.4309802 0.1342139 0.897868 3 1.0695694 0.02743196 -0.5119741
#> s_order ar_12 ar_24
#> Comp_1 1 0.006045561
#> Comp_2 2 -0.308274546 0.1101399
#>
#> Distributions of the error components:
#> standard Gaussian
#>
#>
#> $vallogf
#> [1] -204.461
#>
## fix the intercepts to zero
mixSARfit(y, model, est_shift = FALSE, tol = 10e-4)
#> $model
#> An object of class "MixARGaussian"
#> Number of components: 2
#> prob shift scale order ar_1 ar_2 ar_3
#> Comp_1 0.5601305 0.4223943 4.3230787 2 0.4063056 -0.43836730
#> Comp_2 0.4398695 0.1047950 0.9290184 3 1.0706203 0.02662952 -0.5131505
#> s_order ar_12 ar_24
#> Comp_1 1 0.006308565
#> Comp_2 2 -0.310873840 0.1057719
#>
#> Distributions of the error components:
#> standard Gaussian
#>
#>
#> $vallogf
#> [1] -204.5035
#>