Set or extract the parameters of MixAR objects
parameters.Rd
Set or extract the parameters of MixAR objects.
Usage
parameters(model, namesflag = FALSE, drop = character(0))
parameters(model) <- value
# S4 method for class 'MixAR'
parameters(model) <- value
# S4 method for class 'ANY'
parameters(model) <- value
Details
This is a generic function. The dispatch is on argument model
.
The default calls coef
.
parameters
extracts the parameters of a MixAR object. It
returns a numeric vector. If namesflag
is TRUE
the
returned vector is named, so that the parameters can be referred to by
names. Argument drop
is a character vector giving names of
parameters not to be included in the returned value.
This function can be useful for setting parameters from optimisation routines.
set_parameters
is deprecated,
use parameters(model) <- value
instead.
Examples
parameters(exampleModels$WL_ibm)
#> [1] 2.0000 2.0000 1.0000 0.5439 0.4176 0.0385 0.0000 0.0000 0.0000
#> [10] 4.8227 6.0082 18.1716 0.6792 0.3208 1.6711 -0.6711 1.0000
parameters(exampleModels$WL_ibm, namesflag = TRUE)
#> order1 order2 order3 prob1 prob2 prob3 shift1 shift2 shift3 scale1
#> 2.0000 2.0000 1.0000 0.5439 0.4176 0.0385 0.0000 0.0000 0.0000 4.8227
#> scale2 scale3 ar_11 ar_12 ar_21 ar_22 ar_31
#> 6.0082 18.1716 0.6792 0.3208 1.6711 -0.6711 1.0000
## drop orders
parameters(exampleModels$WL_ibm, namesflag = TRUE, drop = "order")
#> prob1 prob2 prob3 shift1 shift2 shift3 scale1 scale2 scale3 ar_11
#> 0.5439 0.4176 0.0385 0.0000 0.0000 0.0000 4.8227 6.0082 18.1716 0.6792
#> ar_12 ar_21 ar_22 ar_31
#> 0.3208 1.6711 -0.6711 1.0000
## drop orders and mixing weights
parameters(exampleModels$WL_ibm, namesflag = TRUE, drop = c("order", "prob"))
#> shift1 shift2 shift3 scale1 scale2 scale3 ar_11 ar_12 ar_21 ar_22
#> 0.0000 0.0000 0.0000 4.8227 6.0082 18.1716 0.6792 0.3208 1.6711 -0.6711
#> ar_31
#> 1.0000
parameters(exampleModels$WL_I, namesflag = TRUE)
#> order1 order2 order3 prob1 prob2 prob3 shift1 shift2 shift3 scale1 scale2
#> 2.00 1.00 3.00 0.40 0.30 0.30 0.00 0.00 -5.00 1.00 1.00
#> scale3 ar_11 ar_12 ar_21 ar_31 ar_32 ar_33
#> 5.00 0.90 -0.60 -0.50 1.50 -0.74 0.12
parameters(exampleModels$WL_II, namesflag = TRUE)
#> order1 order2 order3 prob1 prob2 prob3 shift1 shift2 shift3 scale1 scale2
#> 2.0 2.0 2.0 0.4 0.3 0.3 5.0 0.0 -5.0 1.0 1.0
#> scale3 ar_11 ar_12 ar_21 ar_22 ar_31 ar_32
#> 5.0 0.9 -0.6 -0.7 0.0 0.0 0.8