Random initial values for MixAR estimation
randomArCoefficients.Rd
Translations of functions from my Mathematica sources. Not used currently?
Usage
randomArCoefficients(ts, wv, pk, pmax, partempl, sub_size = 10,
condthr = 10, nattempt = 10, startfrom = pmax + 1)
randomMarParametersKernel(ts, ww, pk, pmax, partempl, ...)
randomMarResiduals(ts, p, partempl)
tsDesignMatrixExtended(ts, p, ind, partempl)
Arguments
- ts
time series.
- wv,ww
a vector of weights (?).
- pk
the AR order of the requested component.
- pmax
the maximal AR order in the model. Needed since it cannot be determined by functions working on a single component.
- partempl
parameter template, a list containing one element for each mixture component, see Details.
- sub_size
the size of the subsample to use, default is 10.
- condthr
threshold for the condition number.
- nattempt
if
condthr
is not reached afternattempt
attempts, the function returns the results from the last subset tried.- startfrom
the starting index (in
ts
) to use for subsampling, default ispmax + 1
.- ...
arguments to pass on to
randomArCoefficients()
.- p
a vector of non-negative integers, the MixAR order.
- ind
a vector of positive integers specifying the indices of the observations to use for the “response” variable.
Details
randomArCoefficients
tries small subsamples (not necessarilly
contiguous) from the observations in search of a cluster hopefully
belonging to one mixture component and estimates the corresponding
shift and AR parameters.
randomMarResiduals
selects random parameters for each mixture
component and returns the corresponding residuals.
randomMarParametersKernel
is a helper function which does the
computation for one component.
tsDesignMatrixExtended
forms the extended design matrix
corresponding to a subsample. This is used for least square estimation
of the parameters.