Class SubsetPM
SubsetPM-class.Rd
Class "SubsetPM"
- subset PAR models with trigonometric
parameterisation.
Objects from the Class
Objects can be created by calls of the form new("SubsetPM", ...)
but they are typically created by model fitting functions, see the examples.
Slots
theTS
:"ANY"
, the time series to which the model is fitted.period
:"integer"
, the period.order
:"integer"
, the order.findex
:"function"
.harmonics
:"integer"
, Fourier harmonics to include in the model.call
:"call"
, the call used to fit the model.other
:"namedList"
.
Methods
- coef
signature(object = "SubsetPM")
: ...- fitted
signature(object = "SubsetPM")
: ...- residuals
signature(object = "SubsetPM")
: ...- show
signature(object = "SubsetPM")
: ...- vcov
signature(object = "SubsetPM")
: ...
Examples
pcfr4 <- pcts(dataFranses1996)[[4]]
x4 <- as.numeric(window(pcfr4, start = availStart(pcfr4), end = availEnd(pcfr4)))
## without 'harmonics' these models are equivalent
tmpfit <- fit_trigPAR_optim(x4, 2, 4, tol = 1e-14, verbose = FALSE)
tmpfitL <- fit_trigPAR_optim(x4, 2, 4, tol = 1e-14, type = "bylag", verbose = FALSE)
## for comparison
tmpfitP <- pclsdf(x4, 4, 1:2, sintercept = FALSE)
## with intercept
tmpfitc <- fit_trigPAR_optim(x4, 2, 4, tol = 1e-14, verbose = FALSE,
sintercept = TRUE)
tmpfitcn <- fit_trigPAR_optim(x4, 2, 4, tol = 1e-14, verbose = FALSE,
sintercept = structure(TRUE, merge = TRUE))
tmpfitLc <- fit_trigPAR_optim(x4, 2, 4, tol = 1e-14, type = "bylag",
verbose = FALSE, sintercept = TRUE)
coef(tmpfitc, matrix = TRUE)
#> [,1]
#> C_h0 11.01864998
#> C_h1cos -18.35545186
#> C_h1sin -14.20657604
#> C_h2 -16.09720546
#> h0 1.38811806
#> h1cos 0.03694445
#> h1sin -0.10197056
#> h2cos 0.89914498
#> h2sin 0.81695108
#> h3cos -0.13550727
#> h3sin -0.04146482
#> h4 -1.09146423
coef(tmpfitcn, matrix = TRUE)
#> [,1]
#> h0 7.495014
#> h1cos -12.359129
#> h1sin 5.013599
#> h2cos 6.972287
#> h2sin 11.960115
#> h3cos 10.548911
#> h3sin -8.268658
#> h4cos -5.042866
#> h4sin 6.551571
#> h5cos 1.689504
#> h5sin -13.356361
#> h6 -8.302937
coef(tmpfitLc, matrix = TRUE)
#> Sintercept Lag_1 Lag_2
#> h0 11.01865 1.75332945 0.20976594
#> h1cos -18.35545 0.15794355 -0.06969444
#> h1sin -14.20658 0.01450817 -0.04278402
#> h2 -16.09721 -0.81695108 0.89914498
coef(tmpfitc)
#> C_h0 C_h1cos C_h1sin C_h2 h0 h1cos
#> 11.01864998 -18.35545186 -14.20657604 -16.09720546 1.38811806 0.03694445
#> h1sin h2cos h2sin h3cos h3sin h4
#> -0.10197056 0.89914498 0.81695108 -0.13550727 -0.04146482 -1.09146423
coef(tmpfitcn)
#> h0 h1cos h1sin h2cos h2sin h3cos h3sin
#> 7.495014 -12.359129 5.013599 6.972287 11.960115 10.548911 -8.268658
#> h4cos h4sin h5cos h5sin h6
#> -5.042866 6.551571 1.689504 -13.356361 -8.302937
coef(tmpfitLc)
#> C_h0 C_h1cos C_h1sin C_h2 Lag1_h0 Lag1_h1cos
#> 11.01864998 -18.35545186 -14.20657604 -16.09720546 1.75332945 0.15794355
#> Lag1_h1sin Lag1_h2 Lag2_h0 Lag2_h1cos Lag2_h1sin Lag2_h2
#> 0.01450817 -0.81695108 0.20976594 -0.06969444 -0.04278402 0.89914498
coef(tmpfit)
#> h0 h1cos h1sin h2cos h2sin h3cos
#> 1.40791663 -0.19130838 0.05886061 1.39162629 1.34741911 0.27824691
#> h3sin h4
#> -0.50995470 -1.04530311
coef(tmpfitL)
#> Lag1_h0 Lag1_h1cos Lag1_h1sin Lag1_h2 Lag2_h0 Lag2_h1cos
#> 1.734688313 -0.009230596 -0.460324686 -1.347419108 0.256406474 0.061474825
#> Lag2_h1sin Lag2_h2
#> 0.402213170 1.391626291
## convert to PAR coefficients:
coef(tmpfitc, type = "PAR", matrix = TRUE)
#> Sintercept Lag_1 Lag_2
#> Season_1 3.512361 1.2953991 -0.3749424
#> Season_2 10.439987 0.3565062 0.6037369
#> Season_3 23.603494 1.2748814 -0.3144367
#> Season_4 -15.518542 0.5798721 0.5051740
coef(tmpfitcn, type = "PAR", matrix = TRUE)
#> Sintercept Lag_1 Lag_2
#> Season_1 3.512361 1.2953991 -0.3749424
#> Season_2 10.439987 0.3565062 0.6037369
#> Season_3 23.603494 1.2748814 -0.3144367
#> Season_4 -15.518542 0.5798721 0.5051740
coef(tmpfitLc, type = "PAR", matrix = TRUE)
#> Sintercept Lag_1 Lag_2
#> Season_1 3.512361 1.2953991 -0.3749424
#> Season_2 10.439987 0.3565062 0.6037369
#> Season_3 23.603494 1.2748814 -0.3144367
#> Season_4 -15.518542 0.5798721 0.5051740
coef(tmpfitL, type = "PAR", matrix = TRUE)
#> Lag_1 Lag_2
#> Season_1 1.2155550 -0.2832022
#> Season_2 0.2001616 0.7805471
#> Season_3 1.8665524 -0.8520176
#> Season_4 0.1871076 0.8674856
predict(tmpfitc, n.ahead = 4)
#> [1] 491.8044 513.6137 484.4487 493.2365
predict(tmpfitcn, n.ahead = 4)
#> [1] 491.8044 513.6137 484.4487 493.2365
sqrt(diag((vcov(tmpfitL))))
#> XLag1_h0 XLag1_h1cos XLag1_h1sin XLag1_h2 XLag2_h0 XLag2_h1cos
#> 0.1418448 0.1408195 0.1428627 0.1418448 0.1417504 0.1363816
#> XLag2_h1sin XLag2_h2
#> 0.1469231 0.1417504
e <- residuals(tmpfitL)
fi <- fitted(tmpfitL)