Function reference
-
pcts-package - Periodically Correlated and Periodically Integrated Time Series
-
pcts() - Create objects from periodic time series classes
-
nCycles()nTicks()nVariables() - Basic information about periodic ts objects
-
availStart()availEnd() - Time of first or last non-NA value
-
Vec()tsMatrix()tsVector()tsVec()pcMatrix()pcArray()pctsArray() - Core data of periodic time series
-
window(<PeriodicTS>)window(<PeriodicMTS>)na.trim(<PeriodicTS>)na.trim(<PeriodicMTS>)frequency(<PeriodicTimeSeries>)deltat(<PeriodicTimeSeries>)cycle(<PeriodicTimeSeries>)time(<PeriodicTimeSeries>)start(<Cyclic>)end(<Cyclic>) - Periodic methods for base R functions
-
boxplot(<PeriodicTimeSeries>)monthplot(<PeriodicTimeSeries>) - Plot periodic time series
-
pcMean() - Compute periodic mean
-
pcApply() - Apply a function to each season
-
fitPM() - Fit periodic time series models
-
pclsdf() - Fit PAR models using least squares
-
pclspiar() - Fit a periodically integrated autoregressive model
-
fit_trigPAR_optim() - Fit a subset trigonometric PAR model
-
num2pcpar() - Fit PAR model using sample autocorrelations
-
pcarma_acvf2model() - Fit a PC-ARMA model to a periodic autocovariance function
-
unitSeason()unitCycle()seqSeasons()allSeasons()`unitSeason<-`()`unitCycle<-`()`allSeasons<-`() - Get names of seasons
-
nSeasons-methods - Number of seasons for a periodic object
-
pi1ar2par()piar2par() - Convert PIAR coefficients to PAR coefficients
-
maxLag-methods - Methods for function maxLag() in package 'pcts'
-
autocorrelations-methods - Compute autocorrelations and periodic autocorrelations
-
autocovariances-methods - Compute autocovariances and periodic autocovariances
-
partialAutocorrelations-methods - Compute periodic partial autocorrelations
-
partialAutocovariances-methods - Compute periodic partial autocovariances
-
partialCoefficients-methods - Compute periodic partial coefficients
-
partialVariances-methods - Compute periodic partial variances
-
backwardPartialCoefficients-methods - Compute periodic backward partial coefficients
-
backwardPartialVariances-methods - Compute periodic backward partial variances
-
pc_sdfactor() - Compute normalising factors
-
pcTest() - Test for periodicity
-
test_piar() - Test for periodic integration
-
pwn_McLeodLjungBox_test() - McLeod-Ljung-Box test for periodic white noise
-
periodic_acf1_test() - McLeod's test for periodic autocorrelation
-
meanvarcheck()meancovmat() - Asymptotic covariance matrix of periodic mean
-
parcovmatlist() - Compute asymptotic covariance matrix for PAR model
-
pcacf_pwn_var() - Variances of sample periodic autocorrelations
-
sim_pwn() - Simulate periodic white noise
-
sim_pc() - Simulate periodically correlated ARMA series
-
sim_parCoef() - Generate a periodic autoregression model
-
sim_parAcvf() - Create a random periodic autocovariance function
-
dataFranses1996 - Example data from Franses (1996)
-
Fraser2017 - Fraser River at Hope, mean monthly flow
-
four_stocks_since2016_01_01 - Data for four stocks since 2016-01-01
-
pcts_exdata() - Periodic time series objects for examples
-
PeriodicTS-class - Class
"PeriodicTS"
-
PeriodicMTS-class - Class
"PeriodicMTS"
-
PeriodicTS_ts-class - Class
"PeriodicTS_ts"
-
PeriodicMTS_ts-class - Class
"PeriodicMTS_ts"
-
PeriodicTS_zooreg-class - Class
"PeriodicTS_zooreg"
-
PeriodicMTS_zooreg-class - Class
"PeriodicMTS_zooreg"
-
PeriodicTimeSeries-class - Class PeriodicTimeSeries
-
zoo-class - Class zoo made S4
-
zooreg-class - Virtual S4 class zooreg
-
pcCycle()BuiltinCycle() - Create or extract Cycle objects
-
BareCycle-class - Class BareCycle
-
BasicCycle-class - Class BasicCycle
-
BuiltinCycle-class - Class
"BuiltinCycle"and its subclasses in package 'pcts'
-
PartialCycle-class - Class PartialCycle
-
SimpleCycle-class - Class SimpleCycle
-
Cyclic-class - Class
"Cyclic"
-
modelCycle()`modelCycle<-`() - Get the cycle of a periodic object
-
unitCycle-methods - Methods for unitCycle() in package pcts
-
unitCycle - Methods for
`unitCycle<-`in package pcts
-
unitSeason-methods - Methods for unitSeason() in package pcts
-
unitSeason - Methods for
`unitSeason<-`in package pcts
-
seqSeasons-methods - Methods for seqSeasons() in package pcts
-
Cyclic()as.Date(<Cyclic>)date(<Cyclic>)as.Date(<PeriodicTimeSeries>) - Create objects from class Cyclic
-
Pctime()as_Pctime()`[`(<Pctime>)`[[`(<Pctime>) - Pctime objects
-
as_date-methods - Replace methods for as_date in package pcts
-
as_datetime-methods - Methods for as_datetime in package pcts
-
date - Replace methods for date in package pcts
-
pc.filter() - Applies a periodic ARMA filter to a time series
-
pc.filter.xarma() - Filter time series with periodic arma filters
-
pcAR2acf() - Compute periodic autocorrelations from PAR coefficients
-
pdSafeParOrder() - Functions for some basic operations with seasons
-
permean2intercept()intercept2permean() - Convert between periodic centering and intercepts
-
pc.acf.parModel()pcacfMat() - Compute PAR autocovariance matrix
-
alg1() - Periodic Levinson-Durbin algorithm
-
alg1util() - Give partial periodic autocorrelations or other partial prediction quantities for a pcAcvf object.
-
pcAr.ss() - Compute the sum of squares for a given PAR model
-
pcarma_acvf_lazy()pcarma_h_lazy()pcarma_acvf_system()pcarma_param_system()pcarma_h() - Functions to compute various characteristics of a PCARMA model
-
pc.hat.h() - function to compute estimates of the h weights
-
pcarma_prepare()pcarma_unvec()pcarma_tovec() - Functions for work with a simple list specification of pcarma models
-
FittedPeriodicArModel-class - Class FittedPeriodicArModel
-
FittedPeriodicArmaModel-class - Class FittedPeriodicArmaModel
-
ModelCycleSpec-class - Class ModelCycleSpec
-
PartialPeriodicAutocorrelations-class - Class PartialPeriodicAutocorrelations
-
PeriodicArModel-class - Class PeriodicArModel
-
PeriodicArModel() - Create objects from class PeriodicArModel
-
PeriodicArmaFilter-class - Class
"PeriodicArmaFilter"
-
PeriodicArmaModel-class - Class PeriodicArmaModel
-
PeriodicArmaSpec-class - Class PeriodicArmaSpec
-
PeriodicAutocorrelations-class - Class PeriodicAutocorrelations
-
PeriodicAutocovarianceModel-class - Class PeriodicAutocovarianceModel
-
PeriodicAutocovarianceSpec-class - Class PeriodicAutocovarianceSpec
-
PeriodicAutocovariances-class - Class PeriodicAutocovariances
-
PeriodicBJFilter-class - Class PeriodicBJFilter
-
PeriodicFilterModel-class - Class PeriodicFilterModel
-
PeriodicIntegratedArmaSpec-class - Class PeriodicIntegratedArmaSpec
-
PeriodicInterceptSpec-class - Class PeriodicInterceptSpec
-
PeriodicMaModel-class - Class PeriodicMaModel
-
PeriodicSPFilter-class - Class PeriodicSPFilter
-
PeriodicVector() - Class PeriodicVector
-
PiPeriodicArModel-class - Class PiPeriodicArModel
-
PiPeriodicArmaModel-class - Class PiPeriodicArmaModel
-
PiPeriodicMaModel-class - Class PiPeriodicMaModel
-
SamplePeriodicAutocorrelations-class - Class SamplePeriodicAutocorrelations
-
SamplePeriodicAutocovariances-class - Class SamplePeriodicAutocovariances
-
SiPeriodicArModel-class - Class SiPeriodicArModel
-
SiPeriodicArmaModel-class - Class SiPeriodicArmaModel
-
SiPeriodicMaModel-class - Class SiPeriodicMaModel
-
SubsetPM-class - Class SubsetPM
-
permodelmf() - Compute the multi-companion form of a per model
-
ex1f - An example PAR autocorrelation function
-
filterCoef-methods - Get the coefficients of a periodic filter
-
toSeason()toSeasonPair()ttTosl()ttmatToslPairs() - Functions for some basic operations with seasons
-
pcts-deprecated - Deprecated Functions in Package pcts
-
sigmaSq-methods - Methods for
sigmaSqin package pcts
-
[-methods - Indexing of objects from classes in package pcts
-
[ - Index assignments for objects from classes in package pcts
-
[[-methods - Methods for function
`[[`in package 'pcts'
-
$-methods - Methods for function
$in package 'pcts'