Function reference
-
pcts-package
- Periodically Correlated and Periodically Integrated Time Series
-
pcts()
- Create objects from periodic time series classes
-
nCycles()
nTicks()
nVariables()
- Basic information about periodic ts objects
-
availStart()
availEnd()
- Time of first or last non-NA value
-
Vec()
tsMatrix()
tsVector()
tsVec()
pcMatrix()
pcArray()
pctsArray()
- Core data of periodic time series
-
window(<PeriodicTS>)
window(<PeriodicMTS>)
na.trim(<PeriodicTS>)
na.trim(<PeriodicMTS>)
frequency(<PeriodicTimeSeries>)
deltat(<PeriodicTimeSeries>)
cycle(<PeriodicTimeSeries>)
time(<PeriodicTimeSeries>)
start(<Cyclic>)
end(<Cyclic>)
- Periodic methods for base R functions
-
boxplot(<PeriodicTimeSeries>)
monthplot(<PeriodicTimeSeries>)
- Plot periodic time series
-
pcMean()
- Compute periodic mean
-
pcApply()
- Apply a function to each season
-
fitPM()
- Fit periodic time series models
-
pclsdf()
- Fit PAR models using least squares
-
pclspiar()
- Fit a periodically integrated autoregressive model
-
fit_trigPAR_optim()
- Fit a subset trigonometric PAR model
-
num2pcpar()
- Fit PAR model using sample autocorrelations
-
pcarma_acvf2model()
- Fit a PC-ARMA model to a periodic autocovariance function
-
unitSeason()
unitCycle()
seqSeasons()
allSeasons()
`unitSeason<-`()
`unitCycle<-`()
`allSeasons<-`()
- Get names of seasons
-
nSeasons-methods
- Number of seasons for a periodic object
-
pi1ar2par()
piar2par()
- Convert PIAR coefficients to PAR coefficients
-
maxLag-methods
- Methods for function maxLag() in package 'pcts'
-
autocorrelations-methods
- Compute autocorrelations and periodic autocorrelations
-
autocovariances-methods
- Compute autocovariances and periodic autocovariances
-
partialAutocorrelations-methods
- Compute periodic partial autocorrelations
-
partialAutocovariances-methods
- Compute periodic partial autocovariances
-
partialCoefficients-methods
- Compute periodic partial coefficients
-
partialVariances-methods
- Compute periodic partial variances
-
backwardPartialCoefficients-methods
- Compute periodic backward partial coefficients
-
backwardPartialVariances-methods
- Compute periodic backward partial variances
-
pc_sdfactor()
- Compute normalising factors
-
pcTest()
- Test for periodicity
-
test_piar()
- Test for periodic integration
-
pwn_McLeodLjungBox_test()
- McLeod-Ljung-Box test for periodic white noise
-
periodic_acf1_test()
- McLeod's test for periodic autocorrelation
-
meanvarcheck()
meancovmat()
- Asymptotic covariance matrix of periodic mean
-
parcovmatlist()
- Compute asymptotic covariance matrix for PAR model
-
pcacf_pwn_var()
- Variances of sample periodic autocorrelations
-
sim_pwn()
- Simulate periodic white noise
-
sim_pc()
- Simulate periodically correlated ARMA series
-
sim_parCoef()
- Generate a periodic autoregression model
-
sim_parAcvf()
- Create a random periodic autocovariance function
-
dataFranses1996
- Example data from Franses (1996)
-
Fraser2017
- Fraser River at Hope, mean monthly flow
-
four_stocks_since2016_01_01
- Data for four stocks since 2016-01-01
-
pcts_exdata()
- Periodic time series objects for examples
-
PeriodicTS-class
- Class
"PeriodicTS"
-
PeriodicMTS-class
- Class
"PeriodicMTS"
-
PeriodicTS_ts-class
- Class
"PeriodicTS_ts"
-
PeriodicMTS_ts-class
- Class
"PeriodicMTS_ts"
-
PeriodicTS_zooreg-class
- Class
"PeriodicTS_zooreg"
-
PeriodicMTS_zooreg-class
- Class
"PeriodicMTS_zooreg"
-
PeriodicTimeSeries-class
- Class PeriodicTimeSeries
-
zoo-class
- Class zoo made S4
-
zooreg-class
- Virtual S4 class zooreg
-
pcCycle()
BuiltinCycle()
- Create or extract Cycle objects
-
BareCycle-class
- Class BareCycle
-
BasicCycle-class
- Class BasicCycle
-
BuiltinCycle-class
- Class
"BuiltinCycle"
and its subclasses in package 'pcts'
-
PartialCycle-class
- Class PartialCycle
-
SimpleCycle-class
- Class SimpleCycle
-
Cyclic-class
- Class
"Cyclic"
-
modelCycle()
`modelCycle<-`()
- Get the cycle of a periodic object
-
unitCycle-methods
- Methods for unitCycle() in package pcts
-
unitCycle
- Methods for
`unitCycle<-`
in package pcts
-
unitSeason-methods
- Methods for unitSeason() in package pcts
-
unitSeason
- Methods for
`unitSeason<-`
in package pcts
-
seqSeasons-methods
- Methods for seqSeasons() in package pcts
-
Cyclic()
as.Date(<Cyclic>)
date(<Cyclic>)
as.Date(<PeriodicTimeSeries>)
- Create objects from class Cyclic
-
Pctime()
as_Pctime()
`[`(<Pctime>)
`[[`(<Pctime>)
- Pctime objects
-
as_date-methods
- Replace methods for as_date in package pcts
-
as_datetime-methods
- Methods for as_datetime in package pcts
-
date
- Replace methods for date in package pcts
-
pc.filter()
- Applies a periodic ARMA filter to a time series
-
pc.filter.xarma()
- Filter time series with periodic arma filters
-
pcAR2acf()
- Compute periodic autocorrelations from PAR coefficients
-
pdSafeParOrder()
- Functions for some basic operations with seasons
-
permean2intercept()
intercept2permean()
- Convert between periodic centering and intercepts
-
pc.acf.parModel()
pcacfMat()
- Compute PAR autocovariance matrix
-
alg1()
- Periodic Levinson-Durbin algorithm
-
alg1util()
- Give partial periodic autocorrelations or other partial prediction quantities for a pcAcvf object.
-
pcAr.ss()
- Compute the sum of squares for a given PAR model
-
pcarma_acvf_lazy()
pcarma_h_lazy()
pcarma_acvf_system()
pcarma_param_system()
pcarma_h()
- Functions to compute various characteristics of a PCARMA model
-
pc.hat.h()
- function to compute estimates of the h weights
-
pcarma_prepare()
pcarma_unvec()
pcarma_tovec()
- Functions for work with a simple list specification of pcarma models
-
FittedPeriodicArModel-class
- Class FittedPeriodicArModel
-
FittedPeriodicArmaModel-class
- Class FittedPeriodicArmaModel
-
ModelCycleSpec-class
- Class ModelCycleSpec
-
PartialPeriodicAutocorrelations-class
- Class PartialPeriodicAutocorrelations
-
PeriodicArModel-class
- Class PeriodicArModel
-
PeriodicArModel()
- Create objects from class PeriodicArModel
-
PeriodicArmaFilter-class
- Class
"PeriodicArmaFilter"
-
PeriodicArmaModel-class
- Class PeriodicArmaModel
-
PeriodicArmaSpec-class
- Class PeriodicArmaSpec
-
PeriodicAutocorrelations-class
- Class PeriodicAutocorrelations
-
PeriodicAutocovarianceModel-class
- Class PeriodicAutocovarianceModel
-
PeriodicAutocovarianceSpec-class
- Class PeriodicAutocovarianceSpec
-
PeriodicAutocovariances-class
- Class PeriodicAutocovariances
-
PeriodicBJFilter-class
- Class PeriodicBJFilter
-
PeriodicFilterModel-class
- Class PeriodicFilterModel
-
PeriodicIntegratedArmaSpec-class
- Class PeriodicIntegratedArmaSpec
-
PeriodicInterceptSpec-class
- Class PeriodicInterceptSpec
-
PeriodicMaModel-class
- Class PeriodicMaModel
-
PeriodicSPFilter-class
- Class PeriodicSPFilter
-
PeriodicVector()
- Class PeriodicVector
-
PiPeriodicArModel-class
- Class PiPeriodicArModel
-
PiPeriodicArmaModel-class
- Class PiPeriodicArmaModel
-
PiPeriodicMaModel-class
- Class PiPeriodicMaModel
-
SamplePeriodicAutocorrelations-class
- Class SamplePeriodicAutocorrelations
-
SamplePeriodicAutocovariances-class
- Class SamplePeriodicAutocovariances
-
SiPeriodicArModel-class
- Class SiPeriodicArModel
-
SiPeriodicArmaModel-class
- Class SiPeriodicArmaModel
-
SiPeriodicMaModel-class
- Class SiPeriodicMaModel
-
SubsetPM-class
- Class SubsetPM
-
permodelmf()
- Compute the multi-companion form of a per model
-
ex1f
- An example PAR autocorrelation function
-
filterCoef-methods
- Get the coefficients of a periodic filter
-
toSeason()
toSeasonPair()
ttTosl()
ttmatToslPairs()
- Functions for some basic operations with seasons
-
pcts-deprecated
- Deprecated Functions in Package pcts
-
sigmaSq-methods
- Methods for
sigmaSq
in package pcts
-
[-methods
- Indexing of objects from classes in package pcts
-
[
- Index assignments for objects from classes in package pcts
-
[[-methods
- Methods for function
`[[`
in package 'pcts'
-
$-methods
- Methods for function
$
in package 'pcts'