Class "PeriodicMTS"
PeriodicMTS-class.Rd
Class "PeriodicMTS"
is the main class for multivariate periodic
time series in package "pcts"
.
Objects from the Class
Objects can be created by calls of the form
new("PeriodicMTS", ...)
but it is recommended to use
the function pcts
in most cases.
Extends
Class "PeriodicTimeSeries"
, directly.
Class "matrix"
, from data part.
Class "Cyclic"
, by class "PeriodicTimeSeries", distance 2.
Class "array"
, by class "matrix", distance 2.
Class "mMatrix"
, by class "matrix", distance 2.
Class "optionalMatrix"
, by class "matrix", distance 2.
Class "structure"
, by class "matrix", distance 3.
Class "vector"
, by class "matrix", distance 4, with explicit coerce.
Methods
- $
signature(x = "PeriodicMTS")
: ...- [
signature(x = "PeriodicMTS", i = "ANY", j = "missing", drop = "ANY")
: ...- [
signature(x = "PeriodicMTS", i = "missing", j = "missing", drop = "ANY")
: ...- [[
signature(x = "PeriodicMTS", i = "ANY")
: ...- coerce
signature(from = "mts", to = "PeriodicMTS")
: ...- coerce
signature(from = "PeriodicMTS", to = "ts")
: ...- coerce
signature(from = "ts", to = "PeriodicMTS")
: ...- plot
signature(x = "PeriodicMTS", y = "missing")
: ...- show
signature(object = "PeriodicMTS")
: ...- summary
signature(object = "PeriodicMTS")
: ...- [
signature(x = "PeriodicMTS", i = "ANY", j = "ANY", drop = "ANY")
: ...- [
signature(x = "PeriodicMTS", i = "AnyDateTime", j = "ANY", drop = "ANY")
: ...- [
signature(x = "PeriodicMTS", i = "AnyDateTime", j = "missing", drop = "ANY")
: ...- [[
signature(x = "PeriodicMTS", i = "ANY", j = "ANY")
: ...- fitPM
signature(model = "PeriodicArModel", x = "PeriodicMTS")
: ...- pcApply
signature(object = "PeriodicMTS")
: ...- pcMean
signature(object = "PeriodicMTS")
: ...
See also
pcts
which is the recommended way to create periodic
time series,
class PeriodicTS
for the univariate case,
dataFranses1996
and pcts-package
for examples
Examples
pcfr <- pcts(dataFranses1996)
colnames(pcfr)[4] # "GermanyGNP"
#> [1] "GermanyGNP"
## extracting single time series as univariate
class(pcfr[[4]]) # "PeriodicTS"
#> [1] "PeriodicTS"
#> attr(,"package")
#> [1] "pcts"
identical(pcfr[[4]], pcfr$GermanyGNP ) # TRUE
#> [1] TRUE
identical(pcfr[[4]], pcfr[["GermanyGNP"]]) # TRUE
#> [1] TRUE
plot(pcfr[[4]])
## ... and as multivariate
pcfr[4] # "PeriodicMTS"
#> An object of class "PeriodicMTS"
#> Slot "cycle": Object from built-in class 'QuarterYearCycle'
#> Cycle start: Quarter_1
#>
#> GermanyGNP
#> Y1955_1 NA
#> Y1955_2 NA
#> Y1955_3 NA
#> Y1955_4 NA
#> Y1956_1 NA
#> Y1956_2 NA
#> Y1956_3 NA
#> Y1956_4 NA
#> Y1957_1 NA
#> Y1957_2 NA
#> Y1957_3 NA
#> Y1957_4 NA
#> Y1958_1 NA
#> Y1958_2 NA
#> Y1958_3 NA
#> Y1958_4 NA
#> Y1959_1 NA
#> Y1959_2 NA
#> Y1959_3 NA
#> Y1959_4 NA
#> Y1960_1 167.0
#> Y1960_2 176.2
#> Y1960_3 198.0
#> Y1960_4 190.5
#> Y1961_1 180.1
#> Y1961_2 184.9
#> Y1961_3 202.9
#> Y1961_4 195.8
#> Y1962_1 185.4
#> Y1962_2 195.0
#> Y1962_3 214.5
#> Y1962_4 204.9
#> Y1963_1 183.0
#> Y1963_2 199.9
#> Y1963_3 223.5
#> Y1963_4 215.4
#> Y1964_1 201.6
#> Y1964_2 214.4
#> Y1964_3 232.8
#> Y1964_4 226.9
#> Y1965_1 213.4
#> Y1965_2 226.7
#> Y1965_3 243.4
#> Y1965_4 239.2
#> Y1966_1 224.3
#> Y1966_2 235.5
#> Y1966_3 250.0
#> Y1966_4 240.3
#> Y1967_1 220.3
#> Y1967_2 232.6
#> Y1967_3 248.3
#> Y1967_4 248.2
#> Y1968_1 226.9
#> Y1968_2 243.0
#> Y1968_3 267.1
#> Y1968_4 267.2
#> Y1969_1 244.0
#> Y1969_2 262.3
#> Y1969_3 287.1
#> Y1969_4 286.2
#> Y1970_1 257.4
#> Y1970_2 280.1
#> Y1970_3 298.2
#> Y1970_4 298.3
#> Y1971_1 274.5
#> Y1971_2 286.2
#> Y1971_3 304.8
#> Y1971_4 302.5
#> Y1972_1 286.0
#> Y1972_2 296.9
#> Y1972_3 315.2
#> Y1972_4 318.9
#> Y1973_1 304.5
#> Y1973_2 312.1
#> Y1973_3 328.7
#> Y1973_4 328.8
#> Y1974_1 309.4
#> Y1974_2 314.5
#> Y1974_3 328.4
#> Y1974_4 324.2
#> Y1975_1 298.2
#> Y1975_2 308.2
#> Y1975_3 322.1
#> Y1975_4 329.5
#> Y1976_1 316.1
#> Y1976_2 328.1
#> Y1976_3 335.2
#> Y1976_4 348.8
#> Y1977_1 328.6
#> Y1977_2 334.1
#> Y1977_3 341.8
#> Y1977_4 358.9
#> Y1978_1 336.5
#> Y1978_2 346.4
#> Y1978_3 354.8
#> Y1978_4 370.2
#> Y1979_1 348.3
#> Y1979_2 361.5
#> Y1979_3 369.8
#> Y1979_4 384.0
#> Y1980_1 365.3
#> Y1980_2 365.4
#> Y1980_3 372.8
#> Y1980_4 381.7
#> Y1981_1 360.9
#> Y1981_2 364.9
#> Y1981_3 374.8
#> Y1981_4 384.7
#> Y1982_1 357.5
#> Y1982_2 364.8
#> Y1982_3 369.2
#> Y1982_4 379.5
#> Y1983_1 359.4
#> Y1983_2 370.4
#> Y1983_3 376.0
#> Y1983_4 393.1
#> Y1984_1 375.8
#> Y1984_2 375.6
#> Y1984_3 391.2
#> Y1984_4 405.5
#> Y1985_1 375.8
#> Y1985_2 387.2
#> Y1985_3 402.7
#> Y1985_4 412.4
#> Y1986_1 381.0
#> Y1986_2 400.1
#> Y1986_3 411.4
#> Y1986_4 422.2
#> Y1987_1 388.3
#> Y1987_2 402.4
#> Y1987_3 417.5
#> Y1987_4 431.6
#> Y1988_1 405.3
#> Y1988_2 416.6
#> Y1988_3 432.2
#> Y1988_4 446.4
#> Y1989_1 424.1
#> Y1989_2 436.3
#> Y1989_3 445.0
#> Y1989_4 460.6
#> Y1990_1 442.0
#> Y1990_2 452.1
#> Y1990_3 468.9
#> Y1990_4 482.9
#> Y1991_1 NA
#> Y1991_2 NA
#> Y1991_3 NA
#> Y1991_4 NA
plot(pcfr[4])
## extracting more than one time series
plot(pcfr[2:4])
summary(pcfr[2:4])
#> USTotalIPI CanadaUnemployment GermanyGNP
#> Min. : 37.10 Min. : 210.0 Min. :167.0
#> 1st Qu.: 61.30 1st Qu.: 372.8 1st Qu.:243.8
#> Median : 76.60 Median : 587.0 Median :328.2
#> Mean : 77.22 Mean : 707.4 Mean :317.9
#> 3rd Qu.: 93.25 3rd Qu.: 940.5 3rd Qu.:375.9
#> Max. :118.30 Max. :1630.0 Max. :482.9
#> NA's :20 NA's :36 NA's :24
pcfr2 <- pcfr[[2]]
plot(pcfr2)