Fit a periodically integrated autoregressive model
pclspiar.Rd
Fit a periodically integrated autoregressive model.
Usage
pclspiar(x, d, p, icoef = NULL, parcoef = NULL, sintercept = FALSE,
seasonof1st = 1, weights = TRUE, itol = 1e-07, maxniter = 1000)
Arguments
- x
time series.
- d
period.
- p
order of the model, a positive integer, see Details.
- icoef
initial values for the periodic integration coefficients. If missing or
NULL
suitable values are computed.- parcoef
not used currently.
- sintercept
if
TRUE
include seasonal intercepts.- seasonof1st
season of the first observation.
- weights
if
TRUE
, use periodic weights in the nonlinear least squares, see Details.- itol
threshold value for the stopping criterion.
- maxniter
maximum number of iterations.
Details
This function fits a periodically integrated autoregressive model
using non-linear least squares. The order of integration is one and
the order of the periodically correlated part is p - 1
. So,
p
must be greater than or equal to one.
If weights = TRUE
the non-linear optimisation is done with
weights inversely proportional to the innovation variances for the
seasons, otherwise the unweighted sum of squared residuals is
minimised.
Value
a list currently containing the following elements:
- icoef
coefficients of the periodic integration filter.
- parcoef
coefficients of the PAR filter.
- sintercept
seasonal intercepts.
- sigma2hat
innovation variances.
References
Franses PH (1996). Periodicity and Stochastic Trends In Economic Time Series. Oxford University Press Inc., New York.
Franses PH, Paap R (2004). Periodic Time Series Models. Oxford University Press Inc., New York.
Boshnakov GN, Iqelan BM (2009). “Generation of time series models with given spectral properties.” J. Time Series Anal., 30(3), 349--368. ISSN 0143-9782, doi: 10.1111/j.1467-9892.2009.00617.x .
Examples
## see also the examples for fitPM()
ts1 <- window(dataFranses1996[ , "CanadaUnemployment"],
start = c(1960, 1), end = c(1987, 4))
pclspiar(ts1, 4, p = 1, sintercept = TRUE)
#> $icoef
#> alpha1 alpha2 alpha3 alpha4
#> 1.0550271 0.9975805 0.9886708 0.9610295
#>
#> $parcoef
#>
#> [1,]
#> [2,]
#> [3,]
#> [4,]
#>
#> $sintercept
#> Season1 Season2 Season3 Season4
#> 116.64694 -83.39428 -46.15717 33.53077
#>
#> $sigma2hat
#> [1] 2431.805 4378.808 3043.498 1441.109
#>
pclspiar(ts1, 4, p = 2, sintercept = TRUE)
#> $icoef
#> alpha1 alpha2 alpha3 alpha4
#> 1.0397236 1.0179266 0.9852002 0.9590497
#>
#> $parcoef
#> [,1]
#> Season1:Lagged_1 0.6319228
#> Season2:Lagged_1 -0.4231896
#> Season3:Lagged_1 0.6888947
#> Season4:Lagged_1 0.2000132
#>
#> $sintercept
#> Season1 Season2 Season3 Season4
#> 102.95274 -43.53839 24.92487 43.56982
#>
#> $sigma2hat
#> [1] 1918.2343 4059.6479 901.6721 1318.0657
#>