Test for periodic integration
test_piar.Rd
Test if a time series is periodically integrated.
Arguments
- x
time series.
- d
period.
- p
autoregressive order, a positive integer.
- sintercept
if TRUE, include seasonal intercept.
- sslope
if TRUE, include seasonal slope.
- homoschedastic
if TRUE, assume the innovations variance is the same for all seasons.
Details
Computes test statistics for Franses (1996) test for periodic
integration of order 1. The test is based on periodic autoregression
of order p
, where p
can be any positive integer.
Value
a list with the following components:
- p
autoregressive order.
- spec
values of
sintercept
,sslope
, andhomoschedastic
, a named logical vector.- statistics
a matrix containing the test statistics (first row) and the corresponding p-values (second row).
"LR"
is not normalised, so its p-value isNA
.
References
Boswijk HP and Franses PH (1996). ``Unit roots in periodic autoregressions.'' Journal of Time Series Analysis, 17(3), pp. 221--245.
Note
Currently only the case p = 1
is handled, for p > 1
the
statistics are set to NA. :TODO: handle this.
All statistics are computed but some p-values are not computed yet.
Examples
ts1 <- window(dataFranses1996[ , "CanadaUnemployment"],
start = c(1960, 1), end = c(1987, 4))
test_piar(ts1, 4, 1, sintercept = TRUE)
#> $p
#> [1] 1
#>
#> $spec
#> sintercept sslope homoschedastic
#> TRUE FALSE FALSE
#>
#> $statistics
#> LR LRtau tau perFuller
#> stats 0.2757132 -0.5250840 -0.5066658 -0.7737611
#> pvalues NA 0.8680436 0.8749612 0.9052944
#>
pcTest(ts1, "piar", 4, 1, sintercept = TRUE) # same
#> $p
#> [1] 1
#>
#> $spec
#> sintercept sslope homoschedastic
#> TRUE FALSE FALSE
#>
#> $statistics
#> LR LRtau tau perFuller
#> stats 0.2757132 -0.5250840 -0.5066658 -0.7737611
#> pvalues NA 0.8680436 0.8749612 0.9052944
#>
test_piar(ts1, 4, 1, sintercept = TRUE, sslope = TRUE)
#> $p
#> [1] 1
#>
#> $spec
#> sintercept sslope homoschedastic
#> TRUE TRUE FALSE
#>
#> $statistics
#> LR LRtau tau perFuller
#> stats 32.46523 -5.697827 -1.8148425 -4.8636649
#> pvalues NA NA 0.6583561 0.8397845
#>
test_piar(ts1, 4, 1)
#> $p
#> [1] 1
#>
#> $spec
#> sintercept sslope homoschedastic
#> FALSE FALSE FALSE
#>
#> $statistics
#> LR LRtau tau perFuller
#> stats 0.1868073 0.4322121 0.4126738 0.3638568
#> pvalues NA 0.7540915 0.7478642 0.8316871
#>
test_piar(ts1, 4, 1, homoschedastic = TRUE)
#> $p
#> [1] 1
#>
#> $spec
#> sintercept sslope homoschedastic
#> FALSE FALSE TRUE
#>
#> $statistics
#> LR LRtau tau perFuller
#> stats 0.2111895 0.4595536 0.4126738 0.3638568
#> pvalues NA 0.7628059 0.7478642 0.8316871
#>