Generate a periodic autoregression model
sim_parCoef.Rd
Generate a periodic autoregression model, possibly integrated.
Usage
sim_parCoef(period, n.root, sigma2 = rep(1, period), ...)
Arguments
- period
number of seasons in a cycle.
- n.root
number of non-zero roots, see details.
- sigma2
variances of the innovations.
- ...
additional arguments to be passed down to
sim_pcfilter
Details
sim_parCoef
uses the multi-companion method to generate the
model. The function is essentially a wrapper for sim_pcfilter
.
The order of the filter is set to n.root
for each season. Part
of the spectral information may be specified with the "..."
arguments, see sim_pcfilter
and sim_mc
for
a discussion of this.
Value
a periodic autoregression model as a list with elements:
- ar
a matrix whose \(i\)th row contains the coefficients for the \(i\)season,
- sigma2
the innovation variances, a numeric vector.
References
Boshnakov GN, Iqelan BM (2009). “Generation of time series models with given spectral properties.” J. Time Series Anal., 30(3), 349--368. ISSN 0143-9782, doi: 10.1111/j.1467-9892.2009.00617.x .
Examples
sim_parCoef(2, 4) # 2 seasons
#> $ar
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 1 0.008677317 -0.5913406 -0.0004170652 -0.07448196
#> [2,] 1 4.389210306 -0.8915451 0.7344121804 -0.15176050
#>
#> $sigma2
#> [1] 1 1
#>
sim_parCoef(2, 4, sigma2 = c(2, 4))
#> $ar
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 1 -0.4669751 -0.3597549 0.002854628 0.026370980
#> [2,] 1 -0.9790889 0.1665807 0.208343628 0.005077436
#>
#> $sigma2
#> [1] 2 4
#>
sim_parCoef(2, 1)
#> $ar
#> [,1] [,2]
#> [1,] 1 -1.6411246
#> [2,] 1 -0.4461489
#>
#> $sigma2
#> [1] 1 1
#>
sim_parCoef(4, 2) # 4 seasons
#> $ar
#> [,1] [,2] [,3]
#> [1,] 1 0.3266282 0.6762625
#> [2,] 1 0.3748450 -0.2563427
#> [3,] 1 1.3403750 -0.5355615
#> [4,] 1 -1.6486829 2.1881068
#>
#> $sigma2
#> [1] 1 1 1 1
#>
sim_parCoef(period = 4, n.root = 6,
eigabs = c(1, 1, 1, 0.036568887, 0.001968887),
type.eigval = c("cp", "r", "r", "r", "r"),
eigsign = c(pi/2, 1, -1, 1, -1))
#> $ar
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> [1,] 1 0.6734184 -0.1925968 -0.04595757 -0.4265943 0.76494732 0.41783119
#> [2,] 1 1.3850111 -0.8908136 0.86809532 0.7163844 0.14791760 -0.32713804
#> [3,] 1 -0.3539595 0.7508840 0.43447534 -0.2658097 -0.05473122 -0.01302959
#> [4,] 1 4.4672766 2.5169511 -4.70508659 -0.6387933 0.03731006 0.04042685
#>
#> $sigma2
#> [1] 1 1 1 1
#>