Variances of sample periodic autocorrelations
pc.wn.var.acrf.Rd
Computes the variances of sample periodic autocorrelations from periodic white noise.
Arguments
- lag
desired lags, a vector of positive integers.
- season
desired seasons.
- nepoch
number of epochs.
- period
number of seasons.
Value
A matrix whose (i,j)th entry contains the variance of the
autocorrelation coefficient for season season[i]
and lag lag[j]
.
References
McLeod AI (1994). “Diagnostic checking of periodic autoregression models with application.” Journal of Time Series Analysis, 15(2), 221--233.
Examples
pcacf_pwn_var(79, 12, 0:16, 1:12)
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 0.01234568 0.01249800 0.01249800 0.01249800 0.01249800 0.01249800
#> [2,] 0.01234568 0.01265823 0.01249800 0.01249800 0.01249800 0.01249800
#> [3,] 0.01234568 0.01265823 0.01265823 0.01249800 0.01249800 0.01249800
#> [4,] 0.01234568 0.01265823 0.01265823 0.01265823 0.01249800 0.01249800
#> [5,] 0.01234568 0.01265823 0.01265823 0.01265823 0.01265823 0.01249800
#> [6,] 0.01234568 0.01265823 0.01265823 0.01265823 0.01265823 0.01265823
#> [7,] 0.01234568 0.01265823 0.01265823 0.01265823 0.01265823 0.01265823
#> [8,] 0.01234568 0.01265823 0.01265823 0.01265823 0.01265823 0.01265823
#> [9,] 0.01234568 0.01265823 0.01265823 0.01265823 0.01265823 0.01265823
#> [10,] 0.01234568 0.01265823 0.01265823 0.01265823 0.01265823 0.01265823
#> [11,] 0.01234568 0.01265823 0.01265823 0.01265823 0.01265823 0.01265823
#> [12,] 0.01234568 0.01265823 0.01265823 0.01265823 0.01265823 0.01265823
#> [,7] [,8] [,9] [,10] [,11] [,12]
#> [1,] 0.01249800 0.01249800 0.01249800 0.01249800 0.01249800 0.01249800
#> [2,] 0.01249800 0.01249800 0.01249800 0.01249800 0.01249800 0.01249800
#> [3,] 0.01249800 0.01249800 0.01249800 0.01249800 0.01249800 0.01249800
#> [4,] 0.01249800 0.01249800 0.01249800 0.01249800 0.01249800 0.01249800
#> [5,] 0.01249800 0.01249800 0.01249800 0.01249800 0.01249800 0.01249800
#> [6,] 0.01249800 0.01249800 0.01249800 0.01249800 0.01249800 0.01249800
#> [7,] 0.01265823 0.01249800 0.01249800 0.01249800 0.01249800 0.01249800
#> [8,] 0.01265823 0.01265823 0.01249800 0.01249800 0.01249800 0.01249800
#> [9,] 0.01265823 0.01265823 0.01265823 0.01249800 0.01249800 0.01249800
#> [10,] 0.01265823 0.01265823 0.01265823 0.01265823 0.01249800 0.01249800
#> [11,] 0.01265823 0.01265823 0.01265823 0.01265823 0.01265823 0.01249800
#> [12,] 0.01265823 0.01265823 0.01265823 0.01265823 0.01265823 0.01265823
#> [,13] [,14] [,15] [,16] [,17]
#> [1,] 0.0121894 0.01233777 0.01233777 0.01233777 0.01233777
#> [2,] 0.0121894 0.01249800 0.01233777 0.01233777 0.01233777
#> [3,] 0.0121894 0.01249800 0.01249800 0.01233777 0.01233777
#> [4,] 0.0121894 0.01249800 0.01249800 0.01249800 0.01233777
#> [5,] 0.0121894 0.01249800 0.01249800 0.01249800 0.01249800
#> [6,] 0.0121894 0.01249800 0.01249800 0.01249800 0.01249800
#> [7,] 0.0121894 0.01249800 0.01249800 0.01249800 0.01249800
#> [8,] 0.0121894 0.01249800 0.01249800 0.01249800 0.01249800
#> [9,] 0.0121894 0.01249800 0.01249800 0.01249800 0.01249800
#> [10,] 0.0121894 0.01249800 0.01249800 0.01249800 0.01249800
#> [11,] 0.0121894 0.01249800 0.01249800 0.01249800 0.01249800
#> [12,] 0.0121894 0.01249800 0.01249800 0.01249800 0.01249800