Covariances of sample autocorrelations
nvcovOfAcf.RdCompute covariances of autocorrelations.
Arguments
- model
- a model, see Details. 
- maxlag
- a positive integer number, the maximal lag. 
- acf
- autocorrelations. 
- ma
- a positive integer number, the order of the MA(q) model. The default is the maximal lag available in - acf.
Details
nvcovOfAcf computes the unscaled asymptotic autocovariances of
  sample autocorrelations of ARMA models, under the classical
  assumptions when the Bartlett's formulas are valid.  It works directly
  with the parameters of the model and uses Boshnakov (1996).  Argument
  model can be any specification of ARMA models for which
  autocorrelations() will work, e.g. a list with components "ar",
  "ma", and "sigma2".
nvcovOfAcfBD computes the same quantities but uses the formula
  given by Brockwell & Davis (1991) (eq. (7.2.6.), p. 222), which is
  based on the autocorrelations of the model. Argument
  acf contains the autocorrelations.
For nvcovOfAcfBD, argument ma asks to treat the provided
  acf as that of MA(ma). Only the values for lags up to
  ma are used and the rest are set to zero, since the
  autocorrelations of MA(ma) models are zero for lags greater
  than ma.
  To force the use of all autocorrelations provided in acf, set
  ma to the maximal lag available in acf or omit
  ma, since this is its default.
acfOfSquaredArmaModel(model, maxlag) is a convenience function
  which computes the autocovariances of the "squared" model, see
  Boshnakov (1996).
References
Boshnakov GN (1996). “Bartlett's formulae---closed forms and recurrent equations.” Ann. Inst. Statist. Math., 48(1), 49--59. ISSN 0020-3157, doi:10.1007/BF00049288 .
Brockwell PJ, Davis RA (1991). Time series: theory and methods. 2nd ed.. Springer Series in Statistics. Berlin etc.: Springer-Verlag..
Note
The name of nvcovOfAcf stands for “n times the
  variance-covariance matrix”, so it needs to be divided by n to
  get the asymptotic variances and covariances.
Examples
## MA(2)
ma2 <- list(ma = c(0.8, 0.1), sigma2 = 1)
nv <- nvcovOfAcf(ma2, maxlag = 4)
d <- diag(nvcovOfAcf(ma2, maxlag = 7))
cbind(ma2 = 1.96 * sqrt(d) / sqrt(200), iid = 1.96/sqrt(200))
#>             ma2       iid
#> [1,] 0.09452061 0.1385929
#> [2,] 0.16935276 0.1385929
#> [3,] 0.17400093 0.1385929
#> [4,] 0.17400093 0.1385929
#> [5,] 0.17400093 0.1385929
#> [6,] 0.17400093 0.1385929
#> [7,] 0.17400093 0.1385929
acr <- autocorrelations(list(ma = c(0.8, 0.1)), maxlag = 7)
nvBD <- nvcovOfAcfBD(acr, 2, maxlag = 4)
all.equal(nv, nvBD) # TRUE
#> [1] TRUE