White noise tests
whiteNoiseTest.Rd
White noise tests.
Arguments
- object
an object, such as sample autocorrelations or partial autocorrelations.
- h0
the null hypothesis, currently "iid" or "garch".
- ...
additional arguments passed on to methods.
Details
whiteNoiseTest
carries out tests for white noise. The null
hypothesis is identified by argument h0
, based on which
whiteNoiseTest
chooses a suitable function to call. The
functions implementing the tests are also available to be called
directly and their documentation should be consulted for further
arguments that are available.
If h0 = "iid"
, the test statistics and rejection regions can be
use to test if the underlying time series is iid. Argument
method
specifies the method for portmanteau tests: one of
"LiMcLeod" (default), "LjungBox", "BoxPierce".
If h0 = "garch"
, the null hypothesis is that the time series is
GARCH, see Francq & Zakoian (2010). The
tests in this case are based on a non-parametric estimate of the
asymptotic covariance matrix.
Portmonteau statistics and p-values are computed for the lags
specified by argument nlags
. If it is missing, suitable lags
are chosen automatically.
If argument interval
is TRUE, confidence intervals for the
individual autocorrelations or partial autocorrelations are computed.
References
Francq C, Zakoian J (2010). GARCH models: structure, statistical inference and financial applications. John Wiley & Sons. ISBN 978-0-470-68391-0.
Li WK (2004). Diagnostic checks in time series. Chapman & Hall/CRC Press.
See also
acfGarchTest
(h0 = "garch"
),
acfIidTest
(h0 = "iid"
);
Examples
n <- 5000
x <- sarima:::rgarch1p1(n, alpha = 0.3, beta = 0.55, omega = 1, n.skip = 100)
x.acf <- autocorrelations(x)
x.pacf <- partialAutocorrelations(x)
x.iid <- whiteNoiseTest(x.acf, h0 = "iid", nlags = c(5,10,20), x = x, method = "LiMcLeod")
x.iid
#> $test
#> ChiSq DF pvalue
#> [1,] 1.142892 5 0.9502373
#> [2,] 6.425240 10 0.7783615
#> [3,] 19.813720 20 0.4696354
#> attr(,"method")
#> [1] "LiMcLeod"
#>
#> $ci
#> int
#> [1,] -0.02771808 0.02771808
#> [2,] -0.02771808 0.02771808
#> [3,] -0.02771808 0.02771808
#> [4,] -0.02771808 0.02771808
#> [5,] -0.02771808 0.02771808
#> [6,] -0.02771808 0.02771808
#> [7,] -0.02771808 0.02771808
#> [8,] -0.02771808 0.02771808
#> [9,] -0.02771808 0.02771808
#> [10,] -0.02771808 0.02771808
#> [11,] -0.02771808 0.02771808
#> [12,] -0.02771808 0.02771808
#> [13,] -0.02771808 0.02771808
#> [14,] -0.02771808 0.02771808
#> [15,] -0.02771808 0.02771808
#> [16,] -0.02771808 0.02771808
#> [17,] -0.02771808 0.02771808
#> [18,] -0.02771808 0.02771808
#> [19,] -0.02771808 0.02771808
#> [20,] -0.02771808 0.02771808
#> attr(,"level")
#> [1] 0.95
#>
x.iid2 <- whiteNoiseTest(x.acf, h0 = "iid", nlags = c(5,10,20), x = x, method = "LjungBox")
x.iid2
#> $test
#> ChiSq DF pvalue
#> [1,] 1.140803 5 0.9504289
#> [2,] 6.424512 10 0.7784265
#> [3,] 19.832409 20 0.4684563
#> attr(,"method")
#> [1] "LjungBox"
#>
#> $ci
#> int
#> [1,] -0.02771808 0.02771808
#> [2,] -0.02771808 0.02771808
#> [3,] -0.02771808 0.02771808
#> [4,] -0.02771808 0.02771808
#> [5,] -0.02771808 0.02771808
#> [6,] -0.02771808 0.02771808
#> [7,] -0.02771808 0.02771808
#> [8,] -0.02771808 0.02771808
#> [9,] -0.02771808 0.02771808
#> [10,] -0.02771808 0.02771808
#> [11,] -0.02771808 0.02771808
#> [12,] -0.02771808 0.02771808
#> [13,] -0.02771808 0.02771808
#> [14,] -0.02771808 0.02771808
#> [15,] -0.02771808 0.02771808
#> [16,] -0.02771808 0.02771808
#> [17,] -0.02771808 0.02771808
#> [18,] -0.02771808 0.02771808
#> [19,] -0.02771808 0.02771808
#> [20,] -0.02771808 0.02771808
#> attr(,"level")
#> [1] 0.95
#>
x.garch <- whiteNoiseTest(x.acf, h0 = "garch", nlags = c(5,10,20), x = x)
x.garch
#> $test
#> h Q pval
#> [1,] 5 0.5452572 0.9903723
#> [2,] 10 4.7304542 0.9084415
#> [3,] 20 17.2858687 0.6343406
#>
#> $ci
#> int
#> [1,] -0.04316442 0.04316442
#> [2,] -0.04180554 0.04180554
#> [3,] -0.03876060 0.03876060
#> [4,] -0.03604820 0.03604820
#> [5,] -0.03508113 0.03508113
#> [6,] -0.03319458 0.03319458
#> [7,] -0.03167507 0.03167507
#> [8,] -0.03151315 0.03151315
#> [9,] -0.03082342 0.03082342
#> [10,] -0.03031157 0.03031157
#> [11,] -0.03010730 0.03010730
#> [12,] -0.02881384 0.02881384
#> [13,] -0.02767999 0.02767999
#> [14,] -0.02809412 0.02809412
#> [15,] -0.02776439 0.02776439
#> [16,] -0.02827813 0.02827813
#> [17,] -0.02735102 0.02735102
#> [18,] -0.02801310 0.02801310
#> [19,] -0.02805033 0.02805033
#> [20,] -0.02855553 0.02855553
#>