Skip to contents

Plot methods in package sarima.

Methods

signature(x = "SampleAutocorrelations", y = "matrix")

signature(x = "SampleAutocorrelations", y = "missing")

plots the sample autocorrelations with (individual) rejection limits computed under the null hypothesis of i.i.d. (strong white noise) If argument data is provided, it should be the time series from which the autocorrelations were computed. In this case rejection limits for null hypothesis that the time series is (garch) weak white noise are provided, as well.

Additional arguments can be supplied, see whiteNoiseTest the examples, and the vignettes.

signature(x = "SamplePartialAutocorrelations", y = "missing")

plots the sample partial autocorrelations with rejection limits for the hypotheses and controlling arguments as for "SampleAutocorrelations".

See also

whiteNoiseTest for the computations for the rejection levels;

Author

Georgi N. Boshnakov

Examples

set.seed(1234)
n <- 5000
x <- sarima:::rgarch1p1(n, alpha = 0.3, beta = 0.55, omega = 1, n.skip = 100)
x.acf <- autocorrelations(x)
x.acf
#> An object of class "SampleAutocorrelations"
#>         Lag_0         Lag_1         Lag_2         Lag_3         Lag_4 
#>  1.000000e+00  8.582362e-03 -2.018313e-02 -2.132628e-03 -3.961602e-03 
#>         Lag_5         Lag_6         Lag_7         Lag_8         Lag_9 
#> -3.274167e-02 -4.079434e-02  1.854328e-02  4.641011e-03 -1.357080e-02 
#>        Lag_10        Lag_11        Lag_12        Lag_13        Lag_14 
#> -1.219076e-02  2.136221e-03 -1.492981e-02 -1.219485e-02 -4.381421e-02 
#>        Lag_15        Lag_16        Lag_17        Lag_18        Lag_19 
#> -2.281830e-03 -1.766486e-02 -5.846757e-03  1.037726e-02 -9.286768e-05 
#>        Lag_20        Lag_21        Lag_22        Lag_23        Lag_24 
#> -1.013180e-02 -1.038853e-02  1.402807e-02  2.423647e-02  1.047997e-02 
#>        Lag_25        Lag_26        Lag_27        Lag_28        Lag_29 
#>  7.201460e-03  8.488189e-03 -9.712715e-03  1.784192e-02 -1.952790e-02 
#>        Lag_30        Lag_31        Lag_32        Lag_33        Lag_34 
#>  3.907283e-03 -3.013057e-03 -2.266969e-02 -8.177097e-03  5.453303e-03 
#>        Lag_35        Lag_36 
#>  7.377188e-03  1.883301e-03 
#> Slot n:
#> [1] 5000
#> Slot varnames:   <not set>
#> Slot objectname:  x
x.pacf <- partialAutocorrelations(x)
x.pacf
#> An object of class "SamplePartialAutocorrelations"
#>         Lag_0         Lag_1         Lag_2         Lag_3         Lag_4 
#>  1.0000000000  0.0085823617 -0.0202582774 -0.0017828992 -0.0043383782 
#>         Lag_5         Lag_6         Lag_7         Lag_8         Lag_9 
#> -0.0327650792 -0.0404641407  0.0178960591  0.0025478441 -0.0134144032 
#>        Lag_10        Lag_11        Lag_12        Lag_13        Lag_14 
#> -0.0132073022 -0.0006562451 -0.0160165907 -0.0104612044 -0.0454777643 
#>        Lag_15        Lag_16        Lag_17        Lag_18        Lag_19 
#> -0.0042317566 -0.0202992932 -0.0065655314  0.0070365865 -0.0043112264 
#>        Lag_20        Lag_21        Lag_22        Lag_23        Lag_24 
#> -0.0136537970 -0.0107137774  0.0114656459  0.0228629885  0.0098952431 
#>        Lag_25        Lag_26        Lag_27        Lag_28        Lag_29 
#>  0.0058602874  0.0053481194 -0.0098438262  0.0191055268 -0.0192762938 
#>        Lag_30        Lag_31        Lag_32        Lag_33        Lag_34 
#>  0.0032466133 -0.0038284295 -0.0219232817 -0.0081774145  0.0051229039 
#>        Lag_35        Lag_36 
#>  0.0052288057  0.0036772670 
#> Slot n:
#> [1] 5000
#> Slot varnames:   <not set>
#> Slot objectname:  x

plot(x.acf)

## add limits for a weak white noise test:
plot(x.acf, data = x)


## similarly for pacf
plot(x.pacf)

plot(x.pacf, data = x)


plot(x.acf, data = x, main = "Autocorrelation test")

plot(x.pacf, data = x, main = "Partial autocorrelation test")


plot(x.acf, ylim = c(NA,1))

plot(x.acf, ylim.fac = 1.5)

plot(x.acf, data = x, ylim.fac = 1.5)

plot(x.acf, data = x, ylim = c(NA, 1))