Class "fGARCH" - fitted ARMA-GARCH/APARCH models
class-fGARCH.RdClass 'fGARCH' represents models fitted to heteroskedastic time series, including ARCH, GARCH, APARCH, ARMA-GARCH and ARMA-APARCH models.
Objects from the Class
Objects from class "fGARCH" can be created by calls of the
function garchFit.
Slots
call:Object of class
"call", the call used to fit the model and create the object.formula:Object of class
"formula", a formula object representing the mean and variance equations.method:Object of class
"character", a string denoting the optimization method, by default"Max Log-Likelihood Estimation".data:Object of class
"list", a list with one entry,x, containing the data of the time series to which the model is fitted.fit:Object of class
"list", a list with the results from the parameter estimation. The entries of the list depend on the selected algorithm, see below.residuals:Object of class
"numeric", the raw, unstandardized residuals.fitted:Object of class
"numeric", the fitted values.h.t:Object of class
"numeric", the conditional variances (\(h_t = \sigma_t^\delta\)).sigma.t:Object of class
"numeric", the conditional standard deviations.title:Object of class
"character", a title string.description:Object of class
"character", a string with a brief description.
Methods
Besides the S4 methods described below, the are "fGARCH"
methods (S3) for tsdiag (tsdiag), VaR
(VaR), expected shortfall (ES), volatility
(volatility), and maybe others.
- plot
signature(x = "fGARCH", y = "missing"): plots an object of class"fGARCH", see thehelp pageof the method for details and options.- show
signature(object = "fGARCH"): prints the object.- summary
signature(object = "fGARCH"): summarizes the object. Thehelp pageof the"fGARCH"method gives details on the output, as well as interpretation of the results.- predict
signature(object = "fGARCH"): Computes forecasts of the mean and some measures of risk (such as volatility, value-at-risk and expected shortfall), see the method'shelp pagefor full details.- fitted
signature(object = "fGARCH"): extracts fitted values from the object (help page).- residuals
signature(object = "fGARCH"): returns residuals from the fitted model (help page).- coef
signature(object = "fGARCH"): extracts the estimated coefficients (help page).- formula
signature(x = "fGARCH"): extracts the formula expression, see the method'shelp page.- update
signature(object = "fGARCH"): ...
Examples
## simulate a time series, fit a GARCH(1,1) model, and show it:
x <- garchSim( garchSpec(), n = 500)
fit <- garchFit(~ garch(1, 1), data = x, trace = FALSE)
coef(fit)
#> mu omega alpha1 beta1
#> -1.311144e-04 1.288087e-06 8.792572e-02 7.803781e-01
summary(fit)
#>
#> Title:
#> GARCH Modelling
#>
#> Call:
#> garchFit(formula = ~garch(1, 1), data = x, trace = FALSE)
#>
#> Mean and Variance Equation:
#> data ~ garch(1, 1)
#> <environment: 0x5c825a8a7d58>
#> [data = x]
#>
#> Conditional Distribution:
#> norm
#>
#> Coefficient(s):
#> mu omega alpha1 beta1
#> -1.3111e-04 1.2881e-06 8.7926e-02 7.8038e-01
#>
#> Std. Errors:
#> based on Hessian
#>
#> Error Analysis:
#> Estimate Std. Error t value Pr(>|t|)
#> mu -1.311e-04 1.338e-04 -0.980 0.3272
#> omega 1.288e-06 8.186e-07 1.573 0.1156
#> alpha1 8.793e-02 3.955e-02 2.223 0.0262 *
#> beta1 7.804e-01 1.038e-01 7.518 5.57e-14 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Log Likelihood:
#> 2183.772 normalized: 4.367544
#>
#> Description:
#> Thu Nov 13 09:34:07 2025 by user: georgi
#>
#>
#>
#> Standardised Residuals Tests:
#> Statistic p-Value
#> Jarque-Bera Test R Chi^2 0.8749564 0.64566259
#> Shapiro-Wilk Test R W 0.9978536 0.78316127
#> Ljung-Box Test R Q(10) 17.8536807 0.05748257
#> Ljung-Box Test R Q(15) 24.2180027 0.06148270
#> Ljung-Box Test R Q(20) 25.8442849 0.17101649
#> Ljung-Box Test R^2 Q(10) 13.1441777 0.21572205
#> Ljung-Box Test R^2 Q(15) 14.9334373 0.45622242
#> Ljung-Box Test R^2 Q(20) 19.3320156 0.50034833
#> LM Arch Test R TR^2 13.9249937 0.30552369
#>
#> Information Criterion Statistics:
#> AIC BIC SIC HQIC
#> -8.719089 -8.685372 -8.719216 -8.705859
#>
fit # == print(fit) and also == show(fit)
#>
#> Title:
#> GARCH Modelling
#>
#> Call:
#> garchFit(formula = ~garch(1, 1), data = x, trace = FALSE)
#>
#> Mean and Variance Equation:
#> data ~ garch(1, 1)
#> <environment: 0x5c825a8a7d58>
#> [data = x]
#>
#> Conditional Distribution:
#> norm
#>
#> Coefficient(s):
#> mu omega alpha1 beta1
#> -1.3111e-04 1.2881e-06 8.7926e-02 7.8038e-01
#>
#> Std. Errors:
#> based on Hessian
#>
#> Error Analysis:
#> Estimate Std. Error t value Pr(>|t|)
#> mu -1.311e-04 1.338e-04 -0.980 0.3272
#> omega 1.288e-06 8.186e-07 1.573 0.1156
#> alpha1 8.793e-02 3.955e-02 2.223 0.0262 *
#> beta1 7.804e-01 1.038e-01 7.518 5.57e-14 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Log Likelihood:
#> 2183.772 normalized: 4.367544
#>
#> Description:
#> Thu Nov 13 09:34:07 2025 by user: georgi
#>