Class "fGARCH" - fitted ARMA-GARCH/APARCH models
class-fGARCH.Rd
Class 'fGARCH' represents models fitted to heteroskedastic time series, including ARCH, GARCH, APARCH, ARMA-GARCH and ARMA-APARCH models.
Objects from the Class
Objects from class "fGARCH"
can be created by calls of the
function garchFit
.
Slots
call
:Object of class
"call"
, the call used to fit the model and create the object.formula
:Object of class
"formula"
, a formula object representing the mean and variance equations.method
:Object of class
"character"
, a string denoting the optimization method, by default"Max Log-Likelihood Estimation"
.data
:Object of class
"list"
, a list with one entry,x
, containing the data of the time series to which the model is fitted.fit
:Object of class
"list"
, a list with the results from the parameter estimation. The entries of the list depend on the selected algorithm, see below.residuals
:Object of class
"numeric"
, the raw, unstandardized residuals.fitted
:Object of class
"numeric"
, the fitted values.h.t
:Object of class
"numeric"
, the conditional variances (\(h_t = \sigma_t^\delta\)).sigma.t
:Object of class
"numeric"
, the conditional standard deviations.title
:Object of class
"character"
, a title string.description
:Object of class
"character"
, a string with a brief description.
Methods
Besides the S4 methods described below, the are "fGARCH"
methods (S3) for tsdiag
(tsdiag
), VaR
(VaR
), expected shortfall (ES
), volatility
(volatility
), and maybe others.
- plot
signature(x = "fGARCH", y = "missing")
: plots an object of class"fGARCH"
, see thehelp page
of the method for details and options.- show
signature(object = "fGARCH")
: prints the object.- summary
signature(object = "fGARCH")
: summarizes the object. Thehelp page
of the"fGARCH"
method gives details on the output, as well as interpretation of the results.- predict
signature(object = "fGARCH")
: Computes forecasts of the mean and some measures of risk (such as volatility, value-at-risk and expected shortfall), see the method'shelp page
for full details.- fitted
signature(object = "fGARCH")
: extracts fitted values from the object (help page
).- residuals
signature(object = "fGARCH")
: returns residuals from the fitted model (help page
).- coef
signature(object = "fGARCH")
: extracts the estimated coefficients (help page
).- formula
signature(x = "fGARCH")
: extracts the formula expression, see the method'shelp page
.- update
signature(object = "fGARCH")
: ...
Examples
## simulate a time series, fit a GARCH(1,1) model, and show it:
x <- garchSim( garchSpec(), n = 500)
fit <- garchFit(~ garch(1, 1), data = x, trace = FALSE)
coef(fit)
#> mu omega alpha1 beta1
#> -1.194161e-04 1.333768e-06 9.172218e-02 7.721106e-01
summary(fit)
#>
#> Title:
#> GARCH Modelling
#>
#> Call:
#> garchFit(formula = ~garch(1, 1), data = x, trace = FALSE)
#>
#> Mean and Variance Equation:
#> data ~ garch(1, 1)
#> <environment: 0x569a0ca3e748>
#> [data = x]
#>
#> Conditional Distribution:
#> norm
#>
#> Coefficient(s):
#> mu omega alpha1 beta1
#> -1.1942e-04 1.3338e-06 9.1722e-02 7.7211e-01
#>
#> Std. Errors:
#> based on Hessian
#>
#> Error Analysis:
#> Estimate Std. Error t value Pr(>|t|)
#> mu -1.194e-04 1.333e-04 -0.896 0.3704
#> omega 1.334e-06 8.414e-07 1.585 0.1129
#> alpha1 9.172e-02 4.152e-02 2.209 0.0272 *
#> beta1 7.721e-01 1.079e-01 7.155 8.35e-13 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Log Likelihood:
#> 2185.102 normalized: 4.370204
#>
#> Description:
#> Tue Apr 30 14:51:44 2024 by user: georgi
#>
#>
#> Standardised Residuals Tests:
#> Statistic p-Value
#> Jarque-Bera Test R Chi^2 0.7057469 0.70266612
#> Shapiro-Wilk Test R W 0.9979112 0.80185098
#> Ljung-Box Test R Q(10) 18.0066406 0.05485173
#> Ljung-Box Test R Q(15) 24.8843921 0.05151773
#> Ljung-Box Test R Q(20) 26.4473832 0.15153936
#> Ljung-Box Test R^2 Q(10) 13.6251846 0.19078464
#> Ljung-Box Test R^2 Q(15) 15.4841586 0.41713680
#> Ljung-Box Test R^2 Q(20) 20.1909770 0.44604161
#> LM Arch Test R TR^2 13.1132258 0.36086497
#>
#> Information Criterion Statistics:
#> AIC BIC SIC HQIC
#> -8.724407 -8.690690 -8.724534 -8.711177
#>
fit # == print(fit) and also == show(fit)
#>
#> Title:
#> GARCH Modelling
#>
#> Call:
#> garchFit(formula = ~garch(1, 1), data = x, trace = FALSE)
#>
#> Mean and Variance Equation:
#> data ~ garch(1, 1)
#> <environment: 0x569a0ca3e748>
#> [data = x]
#>
#> Conditional Distribution:
#> norm
#>
#> Coefficient(s):
#> mu omega alpha1 beta1
#> -1.1942e-04 1.3338e-06 9.1722e-02 7.7211e-01
#>
#> Std. Errors:
#> based on Hessian
#>
#> Error Analysis:
#> Estimate Std. Error t value Pr(>|t|)
#> mu -1.194e-04 1.333e-04 -0.896 0.3704
#> omega 1.334e-06 8.414e-07 1.585 0.1129
#> alpha1 9.172e-02 4.152e-02 2.209 0.0272 *
#> beta1 7.721e-01 1.079e-01 7.155 8.35e-13 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Log Likelihood:
#> 2185.102 normalized: 4.370204
#>
#> Description:
#> Tue Apr 30 14:51:44 2024 by user: georgi
#>